Tag Archives: screw screw screw

China Hot selling CHINAMFG 7-12bar High Pressure Combined Integrated 2 in 1 Screw Air Compressor Low Noise High Efficiency Electric Stationary manufacturer

Product Description

Product Description

The screw compression components in the CHINAMFG screw air compressor are internally manufactured using the latest CNC grinding machine, combined with online laser technology to ensure extremely precise manufacturing tolerances. Its reliability and performance ensure that the operating costs of the compressor remain extremely low throughout its lifetime.
OPPAIR compressor has the characteristics of stability, quietness, low noise, high pressure, high performance, fuel-saving, energy-saving, small size, multi-language, customizable, removable, portable, stable, light, and small in size.

 

Detailed Photos

Product Parameters

 

Certifications

Packaging & Shipping

Company Profile

Our Advantages

FAQ

Q1: Why do customers choose us?
A: ZheJiang CHINAMFG Machinery Manufacturing Co., Ltd. has a history of 16 years. We specialize in the production of screw air compressors. We warmly welcome your small trial orders for quality or market testing, and we offer special services.

Q2: Are you a manufacturer or a trading company?
A: We are a professional manufacturer with a large modern factory in HangZhou, China. OEM and ODM services can be accepted.

Q3: What is your delivery time?
A: 380V 50HZ We can ship within 10 days. It takes 20 days for other voltages, if you need to rush, please contact our sales staff in advance.

Q4: How long is the warranty period of your air compressor?
A: One year for the whole machine and 2 years for the screw host, excluding consumables.

Q5: How long can your air compressor last?
A: More than 10 years under normal use.

Q6: What are the payment terms?
A: T/T, L/C, Western Union, Credit Card, etc. We can also accept USD, RMB, EUR and other currencies.

Q7: Will you provide some spare parts for the machine?
A: Yes, of course.

Q8: Can you accept OEM orders?
A: Yes, with a professional design team, OEM orders are very welcome.

Q9: What kind of trade terms can you accept?
A: Available trade terms: FOB, CIF, EXW, etc.

Q10: How about the product packaging?
A: We strictly pack our products in standard airworthy boxes.

OPPAIR Silent Rotary Screw Air Compressor for drilling machine air compressor and other works.

After-sales Service: 1year
Warranty: 1year
Lubrication Style: Oil-less
Cooling System: Air Cooling
Power Source: AC Power
Cylinder Position: Angular
Samples:
US$ 1231/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

How are air compressors utilized in the aerospace industry?

Air compressors play a crucial role in various applications within the aerospace industry. They are utilized for a wide range of tasks that require compressed air or gas. Here are some key uses of air compressors in the aerospace industry:

1. Aircraft Systems:

Air compressors are used in aircraft systems to provide compressed air for various functions. They supply compressed air for pneumatic systems, such as landing gear operation, braking systems, wing flap control, and flight control surfaces. Compressed air is also utilized for starting aircraft engines and for cabin pressurization and air conditioning systems.

2. Ground Support Equipment:

Air compressors are employed in ground support equipment used in the aerospace industry. They provide compressed air for tasks such as inflating aircraft tires, operating pneumatic tools for maintenance and repair, and powering air-driven systems for fueling, lubrication, and hydraulic operations.

3. Component Testing:

Air compressors are utilized in component testing within the aerospace industry. They supply compressed air for testing and calibrating various aircraft components, such as valves, actuators, pressure sensors, pneumatic switches, and control systems. Compressed air is used to simulate operating conditions and evaluate the performance and reliability of these components.

4. Airborne Systems:

In certain aircraft, air compressors are employed for specific airborne systems. For example, in military aircraft, air compressors are used for air-to-air refueling systems, where compressed air is utilized to transfer fuel between aircraft in mid-air. Compressed air is also employed in aircraft de-icing systems, where it is used to inflate inflatable de-icing boots on the wing surfaces to remove ice accumulation during flight.

5. Environmental Control Systems:

Air compressors play a critical role in the environmental control systems of aircraft. They supply compressed air for air conditioning, ventilation, and pressurization systems, ensuring a comfortable and controlled environment inside the aircraft cabin. Compressed air is used to cool and circulate air, maintain desired cabin pressure, and control humidity levels.

6. Engine Testing:

In the aerospace industry, air compressors are utilized for engine testing purposes. They provide compressed air for engine test cells, where aircraft engines are tested for performance, efficiency, and durability. Compressed air is used to simulate different operating conditions and loads on the engine, allowing engineers to assess its performance and make necessary adjustments or improvements.

7. Oxygen Systems:

In aircraft, air compressors are involved in the production of medical-grade oxygen for onboard oxygen systems. Compressed air is passed through molecular sieve beds or other oxygen concentrator systems to separate oxygen from other components of air. The generated oxygen is then supplied to the onboard oxygen systems, ensuring a sufficient and continuous supply of breathable oxygen for passengers and crew at high altitudes.

It is important to note that air compressors used in the aerospace industry must meet stringent quality and safety standards. They need to be reliable, efficient, and capable of operating under demanding conditions to ensure the safety and performance of aircraft systems.

air compressor

What safety precautions should be taken when working with compressed air?

Working with compressed air requires adherence to certain safety precautions to prevent accidents and ensure the well-being of individuals involved. Here are some important safety measures to consider:

1. Personal Protective Equipment (PPE):

Wear appropriate PPE, including safety goggles or a face shield to protect eyes from flying debris or particles, hearing protection to reduce noise exposure, and gloves to safeguard hands from potential hazards.

2. Compressed Air Storage:

Avoid storing compressed air in containers that are not designed for this purpose, such as soda bottles or makeshift containers. Use approved and properly labeled air storage tanks or cylinders that can handle the pressure and are regularly inspected and maintained.

3. Pressure Regulation:

Ensure that the air pressure is regulated to a safe level suitable for the equipment and tools being used. High-pressure air streams can cause serious injuries, so it is important to follow the manufacturer’s recommendations and never exceed the maximum allowable pressure.

4. Air Hose Inspection:

Regularly inspect air hoses for signs of damage, such as cuts, abrasions, or leaks. Replace damaged hoses immediately to prevent potential accidents or loss of pressure.

5. Air Blowguns:

Exercise caution when using air blowguns. Never direct compressed air towards yourself or others, as it can cause eye injuries, hearing damage, or dislodge particles that may be harmful if inhaled. Always point blowguns away from people or any sensitive equipment or materials.

6. Air Tool Safety:

Follow proper operating procedures for pneumatic tools. Ensure that tools are in good working condition, and inspect them before each use. Use the appropriate accessories, such as safety guards or shields, to prevent accidental contact with moving parts.

7. Air Compressor Maintenance:

Maintain air compressors according to the manufacturer’s guidelines. Regularly check for leaks, clean or replace filters, and drain moisture from the system. Proper maintenance ensures the safe and efficient operation of the compressor.

8. Training and Education:

Provide adequate training and education to individuals working with compressed air. Ensure they understand the potential hazards, safe operating procedures, and emergency protocols. Encourage open communication regarding safety concerns and implement a culture of safety in the workplace.

9. Lockout/Tagout:

When performing maintenance or repairs on compressed air systems, follow lockout/tagout procedures to isolate the equipment from energy sources and prevent accidental startup. This ensures the safety of the individuals working on the system.

10. Proper Ventilation:

Ensure proper ventilation in enclosed areas where compressed air is used. Compressed air can displace oxygen, leading to a potential risk of asphyxiation. Adequate ventilation helps maintain a safe breathing environment.

By adhering to these safety precautions, individuals can minimize the risks associated with working with compressed air and create a safer work environment.

air compressor

Can you explain the basics of air compressor terminology?

Understanding the basic terminology related to air compressors can help in better comprehension of their operation and discussions related to them. Here are some essential terms related to air compressors:

1. CFM (Cubic Feet per Minute): CFM is a unit of measurement that denotes the volumetric flow rate of compressed air. It indicates the amount of air a compressor can deliver within a minute and is a crucial factor in determining the compressor’s capacity.

2. PSI (Pounds per Square Inch): PSI is a unit of measurement used to quantify pressure. It represents the force exerted by the compressed air on a specific area. PSI is a vital specification for understanding the pressure capabilities of an air compressor and determining its suitability for various applications.

3. Duty Cycle: Duty cycle refers to the percentage of time an air compressor can operate in a given time period. It indicates the compressor’s ability to handle continuous operation without overheating or experiencing performance issues. For instance, a compressor with a 50% duty cycle can run for half the time in a given hour or cycle.

4. Horsepower (HP): Horsepower is a unit used to measure the power output of a compressor motor. It indicates the motor’s capacity to drive the compressor pump and is often used as a reference for comparing different compressor models.

5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air delivered by the compressor. It helps in stabilizing pressure fluctuations, allowing for a more consistent supply of compressed air during peak demand periods.

6. Single-Stage vs. Two-Stage: These terms refer to the number of compression stages in a reciprocating air compressor. In a single-stage compressor, air is compressed in a single stroke of the piston, while in a two-stage compressor, it undergoes initial compression in one stage and further compression in a second stage, resulting in higher pressures.

7. Oil-Free vs. Oil-Lubricated: These terms describe the lubrication method used in air compressors. Oil-free compressors have internal components that do not require oil lubrication, making them suitable for applications where oil contamination is a concern. Oil-lubricated compressors use oil for lubrication, enhancing durability and performance but requiring regular oil changes and maintenance.

8. Pressure Switch: A pressure switch is an electrical component that automatically starts and stops the compressor motor based on the pre-set pressure levels. It helps maintain the desired pressure range in the receiver tank and protects the compressor from over-pressurization.

9. Regulator: A regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications and ensures a consistent and safe supply of compressed air.

These are some of the fundamental terms associated with air compressors. Familiarizing yourself with these terms will aid in understanding and effectively communicating about air compressors and their functionality.

China Hot selling CHINAMFG 7-12bar High Pressure Combined Integrated 2 in 1 Screw Air Compressor Low Noise High Efficiency Electric Stationary   manufacturer China Hot selling CHINAMFG 7-12bar High Pressure Combined Integrated 2 in 1 Screw Air Compressor Low Noise High Efficiency Electric Stationary   manufacturer
editor by CX 2023-10-26

China Professional 200meters Warer Well Drill Rig′s 18bar 18m3/Min 194kw Portable Diesel Screw Air Compressor wholesaler

Product Description

200meters Warer Well Drill Rig’s 18bar 18m3/min 194kw  Portable Diesel Screw Air Compressor 
 
Widely applied to hydropower, railway, ship repairing, mining, highway, spray, oil and gas field, water well drilling rig, municipal construction, etc.
 
Details Feature:
1. Most advanced air end:GHH from German technology.
2. Authorative of the engine.
3. Wide open gull-wing door:
4. MANN Brand Air filter,oil filter,air-oil separator,three stage air filter ensure the air clean.
5. Electricity and pannel instrument system:
6.  Solid undercarriage
7.  High efficient & economic adjustment system.
8. Compact structure design,anti-corrosion,and light-weight.
 
The Specifications for Screw Air Compressor for Water Well Drilling Rig:

           Product name HG750-16C HG800-20F HG950-20F HG700-18C HG980-24F
Compressor Air Displacement(m3/min) 21 22 26 18 27
Discharge Pressure(bar) 16 20 20 18 24
Air End Model COMER AB-1900R COMER AA-1900RH BAOSI BGZ04 COMER AA-1900R BAOSI BGZ04
Compressed Class Single Single Double Single Double
Oil Tank Capacity(L) 130 211 211 130 211
Screw Oil Capacity(L) 80 137 137 80 140
Engine Engine Model Xihu (West Lake) Dis.Feng Cummins
6CTA8.3-C260
Xihu (West Lake) Dis.Feng Cummins
6BTA8.9-C360
Xihu (West Lake) Dis.Feng Cummins
6BTA8.9-C360
Xihu (West Lake) Dis.Feng Cummins
6CTA8.3-C260
YUCHAI
YC6MK400L-K20
Cylinder No. 6 6 6 6 6
Rotate Power(KW) 194 264 264 194 295
Rotate Speed(rpm) 1900 2200 2200 1900 2000
Lubricating Oil Capacity(L) 24 24 24 24 24
Coolant Capacity(L) 60 60 60 60 60
Fuel Capacity(L) 350 550 550 350 580
Whole Machine Drive Mode Direct Drive Direct Drive Direct Drive Direct Drive Direct Drive
Joint Dimension 1-G2″, 1-G1″ 1-G2″, 1-G1″ 1-G2″, 1-G1″ 1-G2″, 1-G1″ 1-G1″, 1-G2″
Size 4600×1980×2210 4080×2080×2100 4080×2080×2100 4600×1980×2210 4080×2080×2100
Weight 3280 5300 5500 3280 5500
Wheel No. 2 or without wheel 4 or without wheel Without wheel 2 or 4 or without wheel Without wheel

 

Lubrication Style: Lubricated
Cooling System: Air Cooling
Power Source: Diesel Engine

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

What are the advantages of using rotary vane compressors?

Rotary vane compressors offer several advantages that make them a popular choice for various applications. These compressors are widely used in industries where a reliable and efficient source of compressed air is required. Here are the advantages of using rotary vane compressors:

1. Compact and Lightweight:

Rotary vane compressors are typically compact and lightweight compared to other types of compressors. Their compact design makes them suitable for installations where space is limited, such as in small workshops or mobile applications. The lightweight nature of these compressors allows for easy transportation and maneuverability.

2. High Efficiency:

Rotary vane compressors are known for their high efficiency. The design of the vanes and the compression chamber allows for smooth and continuous compression, resulting in minimal energy losses. This efficiency translates into lower energy consumption and reduced operating costs over time.

3. Quiet Operation:

Rotary vane compressors operate with relatively low noise levels. The design of the compressor, including the use of vibration damping materials and sound insulation, helps to minimize noise and vibrations during operation. This makes rotary vane compressors suitable for applications where noise reduction is important, such as in indoor environments or noise-sensitive areas.

4. Oil Lubrication:

Many rotary vane compressors utilize oil lubrication, which provides several benefits. The oil lubrication helps to reduce wear and friction between the moving parts, resulting in extended compressor life and improved reliability. It also contributes to better sealing and improved efficiency by minimizing internal leakage.

5. Versatile Applications:

Rotary vane compressors are versatile and can be used in a wide range of applications. They are suitable for both industrial and commercial applications, including automotive workshops, small manufacturing facilities, dental offices, laboratories, and more. They can handle various compressed air requirements, from light-duty tasks to more demanding applications.

6. Easy Maintenance:

Maintenance of rotary vane compressors is relatively straightforward. Routine maintenance tasks typically include oil changes, filter replacements, and periodic inspection of vanes and seals. The simplicity of the design and the availability of replacement parts make maintenance and repairs easier and more cost-effective.

These advantages make rotary vane compressors an attractive choice for many applications, providing reliable and efficient compressed air solutions.

air compressor

How do you choose the right air compressor for woodworking?

Choosing the right air compressor for woodworking is essential to ensure efficient and effective operation of pneumatic tools and equipment. Here are some factors to consider when selecting an air compressor for woodworking:

1. Required Air Volume (CFM):

Determine the required air volume or cubic feet per minute (CFM) for your woodworking tools and equipment. Different tools have varying CFM requirements, so it is crucial to choose an air compressor that can deliver the required CFM to power your tools effectively. Make sure to consider the highest CFM requirement among the tools you’ll be using simultaneously.

2. Tank Size:

Consider the tank size of the air compressor. A larger tank allows for more stored air, which can be beneficial when using tools that require short bursts of high air volume. It helps maintain a consistent air supply and reduces the frequency of the compressor cycling on and off. However, if you have tools with continuous high CFM demands, a larger tank may not be as critical.

3. Maximum Pressure (PSI):

Check the maximum pressure (PSI) rating of the air compressor. Woodworking tools typically operate within a specific PSI range, so ensure that the compressor can provide the required pressure. It is advisable to choose an air compressor with a higher maximum PSI rating to accommodate any future tool upgrades or changes in your woodworking needs.

4. Noise Level:

Consider the noise level of the air compressor, especially if you’ll be using it in a residential or shared workspace. Some air compressors have noise-reducing features or are designed to operate quietly, making them more suitable for woodworking environments where noise control is important.

5. Portability:

Assess the portability requirements of your woodworking projects. If you need to move the air compressor frequently or work in different locations, a portable and lightweight compressor may be preferable. However, if the compressor will remain stationary in a workshop, a larger, stationary model might be more suitable.

6. Power Source:

Determine the power source available in your woodworking workspace. Air compressors can be powered by electricity or gasoline engines. If electricity is readily available, an electric compressor may be more convenient and cost-effective. Gasoline-powered compressors offer greater flexibility for remote or outdoor woodworking projects where electricity may not be accessible.

7. Quality and Reliability:

Choose an air compressor from a reputable manufacturer known for producing reliable and high-quality equipment. Read customer reviews and consider the warranty and after-sales support offered by the manufacturer to ensure long-term satisfaction and reliability.

8. Budget:

Consider your budget and balance it with the features and specifications required for your woodworking needs. While it’s important to invest in a reliable and suitable air compressor, there are options available at various price points to accommodate different budgets.

By considering these factors and evaluating your specific woodworking requirements, you can choose an air compressor that meets the demands of your tools, provides efficient performance, and enhances your woodworking experience.

air compressor

In which industries are air compressors widely used?

Air compressors find extensive usage across various industries due to their versatility and ability to generate compressed air. Here are some industries where air compressors are widely employed:

1. Manufacturing: Air compressors are essential in manufacturing processes for powering pneumatic tools and equipment. They are used for tasks such as operating assembly lines, powering robotic machinery, running paint sprayers, and driving pneumatic actuators.

2. Construction: Air compressors play a crucial role in the construction industry. They power pneumatic tools like jackhammers, nail guns, impact wrenches, and concrete breakers. Compressed air is also used for concrete spraying, sandblasting, and operating air-powered lifts and hoists.

3. Automotive: Air compressors are widely used in automotive manufacturing and repair. They power air tools used in auto body shops, tire inflation equipment, pneumatic lifts, and air-operated brake systems. Compressed air is also utilized in vehicle painting and drying processes.

4. Oil and Gas: The oil and gas industry extensively relies on air compressors for various applications. They are used for pneumatic drilling, powering pneumatic tools in refineries and petrochemical plants, operating pneumatic valves and actuators, and providing instrument air for control systems.

5. Food and Beverage: Air compressors are employed in the food and beverage industry for tasks such as packaging, bottling, and sealing. They power pneumatic conveying systems, control air pressure in food processing equipment, and provide clean compressed air for food handling and storage.

6. Pharmaceutical and Healthcare: Air compressors find application in pharmaceutical manufacturing and healthcare facilities. They are used for operating medical equipment, such as ventilators and dental tools. Compressed air is also utilized in pharmaceutical processes, including tablet coating, fluid bed drying, and aseptic packaging.

7. Aerospace: The aerospace industry relies on air compressors for various applications, including aircraft maintenance and assembly. They power pneumatic tools for aircraft repair, provide compressed air for cleaning and pressurizing systems, and support ground operations, such as tire inflation and aircraft de-icing.

8. Mining: Air compressors are extensively used in the mining industry. They power pneumatic tools for drilling, rock blasting, and excavation. Compressed air is also utilized for ventilation, conveying materials, and operating underground equipment.

9. Energy and Utilities: Air compressors play a vital role in the energy and utilities sector. They are used in power generation plants for pneumatic control systems, instrument air, and operating pneumatic valves. Compressed air is also employed for cleaning and maintenance purposes.

These are just a few examples of the industries where air compressors are widely utilized. The versatility and reliability of air compressors make them indispensable in numerous applications across diverse sectors.

China Professional 200meters Warer Well Drill Rig′s 18bar 18m3/Min 194kw Portable Diesel Screw Air Compressor   wholesaler China Professional 200meters Warer Well Drill Rig′s 18bar 18m3/Min 194kw Portable Diesel Screw Air Compressor   wholesaler
editor by CX 2023-10-26

China Standard CHINAMFG Two Stage Efficiency Rotary Screw Air Compressor ISO, CE Certification lowes air compressor

Product Description

Product Description

Advantages

High efficient*Combined with direct driven arrangement for superior energy efficiency
*Water seals and cools for ideal compression
*Optimal compression processes with the water cooling

 

Minimum service costs *Only air filter and water filter need maintenance
*No lubricant costs
*Fast and easy for minimal downtime

 

High reliability*Simple and robust design
* Low-speed direct drive, no high speed gears
*Low operating temperatures, no special coatings

High-quality air *Low air temperature, easy to dry and treat
*No coating on routers that can contaminate or pollute the air
*Class 0 air quality

 

Environmental safety*Low noise level
*Reduce energy consumption
*No oil discharge to the environment

Induction motor VS. PM motor- key differences that impact motor efficiency

FAQ

 

 

 

 

Q1: Why customer choose us?

O: CHINAMFG Technology Development Co, Ltd is a professional manufacturer for air compressor and after treatment equipment. We have more than 20 years experience in producing and exporting air compressor, air dryer and air filter.

 

Q2: Are you a manufacturer or trading company?

O: Our factory is located in ZheJiang China, we have research and develop center, advanced processing equipment, professional technicians, rich experience workers and after-sales team to offer good quality products and good service to our customers. We also can provide you the OEM&ODM service.

 

Q3: What’s your delivery time?

O: Generally 10 days, if urgently order, pls contact our sales in advance

 

Q4: How long is your air compressor warranty?

O: One year for the whole machine when the compressor leave our factory.

 

Q5: How long could your air compressor be used?

O: Generally, more than 10 years

 

Q6: What’s payment term?

O: T/T, L/C, Paypal and etc. Also we could accept USD, RMB, Euro and other currency (Pls contact our sales for more information

 

Q7: How about your customer service?

O: 24 hours on-line service available

 

Q8: How about your after-sales service?

O: 1. Provide customers with installation and commissioning online instructions.

2. Well-trained engineers available to overseas service

3. World wide agents and after service available

 

Lubrication Style: Lubricated
Cooling System: Air Cooling
Power Source: AC Power
Structure Type: Closed Type
Installation Type: Stationary Type
Type: Twin-Screw Compressor
Samples:
US$ 58796/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

What is the impact of humidity on compressed air quality?

Humidity can have a significant impact on the quality of compressed air. Compressed air systems often draw in ambient air, which contains moisture in the form of water vapor. When this air is compressed, the moisture becomes concentrated, leading to potential issues in the compressed air. Here’s an overview of the impact of humidity on compressed air quality:

1. Corrosion:

High humidity in compressed air can contribute to corrosion within the compressed air system. The moisture in the air can react with metal surfaces, leading to rust and corrosion in pipes, tanks, valves, and other components. Corrosion not only weakens the structural integrity of the system but also introduces contaminants into the compressed air, compromising its quality and potentially damaging downstream equipment.

2. Contaminant Carryover:

Humidity in compressed air can cause carryover of contaminants. Water droplets formed due to condensation can carry particulates, oil, and other impurities present in the air. These contaminants can then be transported along with the compressed air, leading to fouling of filters, clogging of pipelines, and potential damage to pneumatic tools, machinery, and processes.

3. Decreased Efficiency of Pneumatic Systems:

Excessive moisture in compressed air can reduce the efficiency of pneumatic systems. Water droplets can obstruct or block the flow of air, leading to decreased performance of pneumatic tools and equipment. Moisture can also cause problems in control valves, actuators, and other pneumatic devices, affecting their responsiveness and accuracy.

4. Product Contamination:

In industries where compressed air comes into direct contact with products or processes, high humidity can result in product contamination. Moisture in compressed air can mix with sensitive products, leading to quality issues, spoilage, or even health hazards in industries such as food and beverage, pharmaceuticals, and electronics manufacturing.

5. Increased Maintenance Requirements:

Humidity in compressed air can increase the maintenance requirements of a compressed air system. Moisture can accumulate in filters, separators, and other air treatment components, necessitating frequent replacement or cleaning. Excessive moisture can also lead to the growth of bacteria, fungus, and mold within the system, requiring additional cleaning and maintenance efforts.

6. Adverse Effects on Instrumentation:

Humidity can adversely affect instrumentation and control systems that rely on compressed air. Moisture can disrupt the accuracy and reliability of pressure sensors, flow meters, and other pneumatic instruments, leading to incorrect measurements and control signals.

To mitigate the impact of humidity on compressed air quality, various air treatment equipment is employed, including air dryers, moisture separators, and filters. These devices help remove moisture from the compressed air, ensuring that the air supplied is dry and of high quality for the intended applications.

air compressor

What safety precautions should be taken when working with compressed air?

Working with compressed air requires adherence to certain safety precautions to prevent accidents and ensure the well-being of individuals involved. Here are some important safety measures to consider:

1. Personal Protective Equipment (PPE):

Wear appropriate PPE, including safety goggles or a face shield to protect eyes from flying debris or particles, hearing protection to reduce noise exposure, and gloves to safeguard hands from potential hazards.

2. Compressed Air Storage:

Avoid storing compressed air in containers that are not designed for this purpose, such as soda bottles or makeshift containers. Use approved and properly labeled air storage tanks or cylinders that can handle the pressure and are regularly inspected and maintained.

3. Pressure Regulation:

Ensure that the air pressure is regulated to a safe level suitable for the equipment and tools being used. High-pressure air streams can cause serious injuries, so it is important to follow the manufacturer’s recommendations and never exceed the maximum allowable pressure.

4. Air Hose Inspection:

Regularly inspect air hoses for signs of damage, such as cuts, abrasions, or leaks. Replace damaged hoses immediately to prevent potential accidents or loss of pressure.

5. Air Blowguns:

Exercise caution when using air blowguns. Never direct compressed air towards yourself or others, as it can cause eye injuries, hearing damage, or dislodge particles that may be harmful if inhaled. Always point blowguns away from people or any sensitive equipment or materials.

6. Air Tool Safety:

Follow proper operating procedures for pneumatic tools. Ensure that tools are in good working condition, and inspect them before each use. Use the appropriate accessories, such as safety guards or shields, to prevent accidental contact with moving parts.

7. Air Compressor Maintenance:

Maintain air compressors according to the manufacturer’s guidelines. Regularly check for leaks, clean or replace filters, and drain moisture from the system. Proper maintenance ensures the safe and efficient operation of the compressor.

8. Training and Education:

Provide adequate training and education to individuals working with compressed air. Ensure they understand the potential hazards, safe operating procedures, and emergency protocols. Encourage open communication regarding safety concerns and implement a culture of safety in the workplace.

9. Lockout/Tagout:

When performing maintenance or repairs on compressed air systems, follow lockout/tagout procedures to isolate the equipment from energy sources and prevent accidental startup. This ensures the safety of the individuals working on the system.

10. Proper Ventilation:

Ensure proper ventilation in enclosed areas where compressed air is used. Compressed air can displace oxygen, leading to a potential risk of asphyxiation. Adequate ventilation helps maintain a safe breathing environment.

By adhering to these safety precautions, individuals can minimize the risks associated with working with compressed air and create a safer work environment.

air compressor

Can air compressors be used for automotive applications?

Yes, air compressors can be used for various automotive applications and are commonly found in automotive repair shops, garages, and even in some vehicles. Here are some automotive applications where air compressors are frequently utilized:

1. Tire Inflation: Air compressors are commonly used to inflate tires in automotive applications. They provide a convenient and efficient way to inflate tires to the recommended pressure, ensuring optimal tire performance, fuel efficiency, and safety.

2. Air Tools: Air compressors power a wide range of pneumatic tools used in automotive repair and maintenance. These tools include impact wrenches, ratchet wrenches, air hammers, pneumatic drills, and sanders. Air-powered tools are favored for their high torque and power-to-weight ratio, making them suitable for heavy-duty automotive tasks.

3. Spray Painting: Air compressors are commonly used in automotive painting applications. They power airbrushes and spray guns that are used to apply paint, primer, and clear coats. Air compressors provide the necessary air pressure to atomize the paint and deliver a smooth and even finish.

4. Brake System Maintenance: Air compressors play a crucial role in maintaining and diagnosing automotive brake systems. They are used to pressurize the brake lines, allowing for proper bleeding of the system and detection of leaks or faults.

5. Suspension Systems: Some automotive suspension systems, such as air suspensions, rely on air compressors to maintain the desired air pressure in the suspension components. The compressor inflates or deflates the suspension as needed to provide a comfortable ride and optimal handling.

6. Cleaning and Dusting: Air compressors are used for cleaning automotive parts, blowing away dust and debris, and drying surfaces. They provide a high-pressure stream of air that effectively cleans hard-to-reach areas.

7. Air Conditioning Systems: Air compressors are a key component in automotive air conditioning systems. They compress and circulate refrigerant, allowing the system to cool and dehumidify the air inside the vehicle.

When using air compressors for automotive applications, it’s important to consider the specific requirements of the task at hand. Ensure that the air compressor has the necessary pressure and capacity to meet the demands of the application. Additionally, use appropriate air hoses, fittings, and tools that are compatible with the compressor’s output.

Overall, air compressors are versatile and valuable tools in the automotive industry, providing efficient power sources for a wide range of applications, from tire inflation to powering pneumatic tools and supporting various automotive systems.

China Standard CHINAMFG Two Stage Efficiency Rotary Screw Air Compressor ISO, CE Certification   lowes air compressorChina Standard CHINAMFG Two Stage Efficiency Rotary Screw Air Compressor ISO, CE Certification   lowes air compressor
editor by CX 2023-10-26

China wholesaler Hot Sale 60HP 5.2~7.6m3 Per Min/Dry Type Oil Free Silent Screw Air Compressor (SCR60GV Series) Design for Food Industry air compressor repair near me

Product Description

If you are interested in any of our

FAQ

1   What trade terms do we provide? What kind of settlement currency do we offer?

Trade term :CIF ,CFR ,FOB,Ex-Works 
As far Our business traded in Dollars ,Euros and RMB .

2   How long is our delivery?

Our standard delivery time is 30-40 days after confirmation order & receiving recipets for standard compressors, for the other non standard requirement will be discussed case by case.

3   What is the voltage of the compressor?

The available voltage include 380V/50HZ/3Phase, 400V/50HZ/3P, 415V/50HZ/3P, 220V/60HZ/3P, 380V/60HZ/3P, 440V/60HZ/3P. At the same time we provide other voltage  according to customer requirement.

4  Can our compressor run in high temperature environment? What is the working temperature range for our machine?

Yes ,our machine would run in high temperature environment ,until now our products have been sold to many countries which would meet high temperature in summer ,such like Iraq, Saudi Arabia, Egypt, Algeria, etc. 
Work temperature range :1-45 ºC(33.8ºF-113ºF)

5  What’s the min. Order requirement ?

Min. Order requirement is 1PCS. 

Lubrication Style: Oil-free
Cooling System: Air Cooling
Power Source: AC Power
Cylinder Position: Vertical
Structure Type: Closed Type
Installation Type: Stationary Type
Customization:
Available

|

air compressor

What are the differences between stationary and portable air compressors?

Stationary and portable air compressors are two common types of air compressors with distinct features and applications. Here are the key differences between them:

1. Mobility:

The primary difference between stationary and portable air compressors is their mobility. Stationary air compressors are designed to be permanently installed in a fixed location, such as a workshop or a factory. They are typically larger, heavier, and not easily movable. On the other hand, portable air compressors are smaller, lighter, and equipped with handles or wheels for easy transportation. They can be moved from one location to another, making them suitable for jobsites, construction sites, and other mobile applications.

2. Power Source:

Another difference lies in the power source used by stationary and portable air compressors. Stationary compressors are usually powered by electricity, as they are designed for continuous operation in a fixed location with access to power outlets. They are connected to the electrical grid or have dedicated wiring. In contrast, portable compressors are available in various power options, including electric, gasoline, and diesel engines. This versatility allows them to operate in remote areas or sites without readily available electricity.

3. Tank Capacity:

Tank capacity is also a distinguishing factor between stationary and portable air compressors. Stationary compressors often have larger storage tanks to store compressed air for extended periods. The larger tanks enable them to deliver a continuous and steady supply of compressed air for longer durations without the need for frequent cycling. Portable compressors, due to their compact size and portability, generally have smaller tank capacities, which may be sufficient for intermittent or smaller-scale applications.

4. Performance and Output:

The performance and output capabilities of stationary and portable air compressors can vary. Stationary compressors are typically designed for high-volume applications that require a consistent and continuous supply of compressed air. They often have higher horsepower ratings, larger motor sizes, and higher air delivery capacities. Portable compressors, while generally offering lower horsepower and air delivery compared to their stationary counterparts, are still capable of delivering sufficient air for a range of applications, including pneumatic tools, inflation tasks, and light-duty air-powered equipment.

5. Noise Level:

Noise level is an important consideration when comparing stationary and portable air compressors. Stationary compressors, being larger and built for industrial or commercial settings, are often equipped with noise-reducing features such as sound insulation and vibration dampening. They are designed to operate at lower noise levels, which is crucial for maintaining a comfortable working environment. Portable compressors, while efforts are made to reduce noise, may produce higher noise levels due to their compact size and portability.

6. Price and Cost:

Stationary and portable air compressors also differ in terms of price and cost. Stationary compressors are generally more expensive due to their larger size, higher power output, and industrial-grade construction. They often require professional installation and may involve additional costs such as electrical wiring and system setup. Portable compressors, being smaller and more versatile, tend to have a lower upfront cost. They are suitable for individual users, contractors, and small businesses with budget constraints or flexible air supply needs.

When selecting between stationary and portable air compressors, it is essential to consider the specific requirements of the intended application, such as mobility, power source availability, air demands, and noise considerations. Understanding these differences will help in choosing the appropriate type of air compressor for the intended use.

air compressor

What is the role of air compressors in manufacturing and industrial processes?

Air compressors play a crucial role in various manufacturing and industrial processes, providing a reliable source of compressed air that powers a wide range of equipment and tools. Here are some key roles of air compressors in manufacturing and industrial settings:

1. Pneumatic Tools and Equipment:

Air compressors power a wide range of pneumatic tools and equipment used in manufacturing processes. These tools include impact wrenches, air drills, sanders, grinders, nail guns, and spray guns. Compressed air provides the necessary force and energy for these tools, enabling efficient and precise operations.

2. Automation and Control Systems:

Compressed air is used in automation and control systems within manufacturing facilities. Pneumatic actuators and valves use compressed air to control the movement of machinery and components. These systems are widely used in assembly lines, packaging operations, and material handling processes.

3. Air Blowing and Cleaning:

Compressed air is employed for blowing and cleaning applications in manufacturing and industrial processes. Air blowguns and air nozzles are used to remove debris, dust, and contaminants from surfaces, machinery, and products. Compressed air is also used for drying, cooling, and purging operations.

4. Air Separation and Gas Generation:

Air compressors are used in air separation plants to generate industrial gases such as nitrogen, oxygen, and argon. These gases are essential for various industrial processes, including metal fabrication, chemical production, and food packaging.

5. HVAC Systems:

Compressed air is utilized in heating, ventilation, and air conditioning (HVAC) systems. It powers pneumatic actuators for damper control, pneumatic controls for pressure regulation, and pneumatic valves for flow control in HVAC applications.

6. Air Compression for Storage and Transport:

Compressed air is used for storage and transport purposes in manufacturing and industrial settings. It is often used to pressurize storage tanks or containers that hold gases or liquids. Compressed air also facilitates the transfer of materials through pipelines and pneumatic conveying systems.

7. Process Instrumentation:

Compressed air is utilized in process instrumentation and control systems. It powers pneumatic instruments such as pressure gauges, flow meters, and control valves. These instruments play a critical role in monitoring and regulating various parameters in industrial processes.

8. Material Handling and Pneumatic Conveying:

In manufacturing and industrial facilities, compressed air is used for material handling and pneumatic conveying systems. It enables the movement of bulk materials such as powders, granules, and pellets through pipelines, facilitating efficient and controlled material transfer.

Overall, air compressors are vital components in manufacturing and industrial processes, providing a versatile and efficient source of power for a wide range of applications. The specific role of air compressors may vary depending on the industry, process requirements, and operational needs.

air compressor

What is the difference between a piston and rotary screw compressor?

Piston compressors and rotary screw compressors are two common types of air compressors with distinct differences in their design and operation. Here’s a detailed explanation of the differences between these two compressor types:

1. Operating Principle:

  • Piston Compressors: Piston compressors, also known as reciprocating compressors, use one or more pistons driven by a crankshaft to compress air. The piston moves up and down within a cylinder, creating a vacuum during the intake stroke and compressing the air during the compression stroke.
  • Rotary Screw Compressors: Rotary screw compressors utilize two intermeshing screws (rotors) to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads.

2. Compression Method:

  • Piston Compressors: Piston compressors achieve compression through a positive displacement process. The air is drawn into the cylinder and compressed as the piston moves back and forth. The compression is intermittent, occurring in discrete cycles.
  • Rotary Screw Compressors: Rotary screw compressors also employ a positive displacement method. The compression is continuous as the rotating screws create a continuous flow of air and compress it gradually as it moves along the screw threads.

3. Efficiency:

  • Piston Compressors: Piston compressors are known for their high efficiency at lower flow rates and higher pressures. They are well-suited for applications that require intermittent or variable air demand.
  • Rotary Screw Compressors: Rotary screw compressors are highly efficient for continuous operation and are designed to handle higher flow rates. They are often used in applications with a constant or steady air demand.

4. Noise Level:

  • Piston Compressors: Piston compressors tend to generate more noise during operation due to the reciprocating motion of the pistons and valves.
  • Rotary Screw Compressors: Rotary screw compressors are generally quieter in operation compared to piston compressors. The smooth rotation of the screws contributes to reduced noise levels.

5. Maintenance:

  • Piston Compressors: Piston compressors typically require more frequent maintenance due to the higher number of moving parts, such as pistons, valves, and rings.
  • Rotary Screw Compressors: Rotary screw compressors have fewer moving parts, resulting in lower maintenance requirements. They often have longer service intervals and can operate continuously for extended periods without significant maintenance.

6. Size and Portability:

  • Piston Compressors: Piston compressors are available in both smaller portable models and larger stationary units. Portable piston compressors are commonly used in construction, automotive, and DIY applications.
  • Rotary Screw Compressors: Rotary screw compressors are typically larger and more suitable for stationary installations in industrial and commercial settings. They are less commonly used in portable applications.

These are some of the key differences between piston compressors and rotary screw compressors. The choice between the two depends on factors such as required flow rate, pressure, duty cycle, efficiency, noise level, maintenance needs, and specific application requirements.

China wholesaler Hot Sale 60HP 5.2~7.6m3 Per Min/Dry Type Oil Free Silent Screw Air Compressor (SCR60GV Series) Design for Food Industry   air compressor repair near meChina wholesaler Hot Sale 60HP 5.2~7.6m3 Per Min/Dry Type Oil Free Silent Screw Air Compressor (SCR60GV Series) Design for Food Industry   air compressor repair near me
editor by CX 2023-10-26

China Good quality Zay-250 185kw CHINAMFG China Brand Screw Air Compressor air compressor for sale

Product Description

ZAY-250 185KW CHINAMFG china air compressor manufacturer

ZAKF air compressor belongs to the general equipment category, and is widely used in steel, electric power, metallurgy, shipbuilding, electronics, textile, mining, chemical, petroleum, light industry, paper printing, machinery manufacturing, food and medicine, transportation facilities, casting spraying, and shipping terminals , Automotive industry, military technology, aerospace, infrastructure and other fields

air compressor digital
air compressor diesel
air compressor dental
air compressor controller
air compressor air
air compressor 500 litre
air compressor 500 liter
air compressor 250 bar
air compressor 100 liter
ac rotary compressor price

 

Product Brand

ZAKF import advanced technology from Europe, through constant practice and improvement, design a new generation of “ZAKF” air compressor.
Improved quality assurance manual, advanced production process, control management program files comprehensive, standardized, ensuring high quality brand name products “ZAKF”, stable and durable. High quality, intimate service get the praise from users all over the world.

Why use CHINAMFG screw air compressor?

1.Simple structure, small volume and light weight
2.Reasonable design, convenient to install and move.
3.Customized motor, long life time
4.warranty:air end with 2 years, air compressor with 1 year
5.noise:65db, silent small air compressor
6.customized hose with excellent quality.

Where you use?

Product parameters
 

Model Number Starting System Driving Mode  Power(KW) Flow()/Pressure(bar) Cooling-down Method Outlet Size Outline Dimension(l:w:h) Weight(kg) Noise dB(A)
ZAY-10 Soft Start Integrated direct drive 7.5/10 0.36-1.3/7 0.33-1.1/8 0.28-0.95/10 air cooling G 3/4” 800*720*950 620 62±2
ZAY-15 Soft Start Integrated direct drive 11/15 0.51-1.7/7 0.66-2.2/8 0.62-2.0/10 air cooling G 3/4” 950*800*1158 450 66±2
ZAY-20 Soft Start Integrated direct drive 15/20 0.72-2.4/7 0.66-2.2/8 0.62-2.0/10 air cooling G 3/4” 950*800*1158 480 66±2
ZAY-30 Soft Start Integrated direct drive 22/30 1.41-3.8/7 1.1-3.60/8 1.96-3.2/10 air cooling G 1” 1150*880*1360 650 66±2
ZAY-40 Soft Start Integrated direct drive 30/40 1.59-5.6/7 1.50-5.0/8 1.35-4.5/10 air cooling G 1” 1150*880*1360 780 66±2
ZAY-50 Soft Start Integrated direct drive 37/50 2.04-6.8/7 1.86-6.2/8 1.68-5.6/10 air cooling G 1 1/2” 1300*950*1420 850 68±2
ZAY-60 Soft Start Integrated direct drive 45/60 2.22-7.4/7 2.16-7.2/8 2.04-6.8/10 air cooling G 1 1/2” 1300*950*1420 880 68±2
ZAY-75 Soft Start Integrated direct drive 55/75 3.15-10.5/7 2.88-9.6/8 2.79-9.3/10 air cooling G 2” 1600*1170*1580 1600 69±2
ZAY-100 Soft Start Integrated direct drive 75/100 4.18-13.8/7 4.05-13.5/8 3.75-12.5/10 air cooling G 2” 1600*1170*1580 1750 69±2
ZAY-120 Soft Start Integrated direct drive 90/120 4.95-16.5/7 4.59-15.3/8 1.17-13.9/10 air cooling G 2” 1600*1170*1580 1950 69±2
ZAY-150 Soft Start Integrated direct drive 110/150 6.36-21.2/7 5.94-19.8/8 5.58-18.6/10 air cooling DN65 2500*1470*1840 2230 75±2
ZAY-175 Soft Start Integrated direct drive 132/175 7.29-24.3/7 7.14-23.8/8 6.63-22.1/10 air cooling DN65 2500*1470*1840 2580 75±2
ZAY-200 Soft Start Integrated direct drive 160/200 8.61-28.7/7 8.28-27.6/8 7.38-24.6/10  air cooling DN80 2500*1470*1840 2880 75±2
ZAY-250 Soft Start Integrated direct drive 185/250 9.60-32.0/7 9.15-30.5/8 7.25-27.5/10 air cooling DN100 2800*1900*1950 4200 78±2
ZAY-300 Soft Start Integrated direct drive 220/300 11.0-36.7/7 10.3-34.5/8 9.06-30.2/10 air cooling DN100 2800*1900*1950 4600 78±2
ZAY-350 Soft Start Integrated direct drive 250/350 12.6-42.0/7 12.1-40.5/8 air cooling DN100 3300*1900*1950 5000 78±2

 
Company Information

Company Profile—–Jiubei

   Jiubei  Industry Co., Ltd was established in 2000.  We are a Hi-Techcompany .
specialized in research, development, manufacture and distribution of Air compressor spare parts.
    Expect produceing air compressor replacement spare parts , we also supply the maintemance of air compressor .
    In 2017, we built screw air compressor factory in HangZhou city, ZheJiang province, it’s the hometown of my boss.
and we get the support from goverment. our first brand is “ZAKF”

    

Our Services
 

      
 
 
 All the compressor parts Quality is guaranteed 1 year
 A full quotation as your required will be offered in 24 hours
Service 24 hours a day ,6 days a week 
Accept your specific order and do everything we can do to meet your requirement                                                    

FAQ
Q1: How can I get the quotation?
A: You can advise us the part number for checking, and we will quote to you soon by email.
 
Q2:What kind of ways for transportation ?
A:In general by air, sea or Express.(like DHL,Fedex,TNT,etc.)
 
Q3:How do I know the quality of productions?
A:We have a strict series of quality control, and we have perfect after service system, which can help you to solve the problem soon
 
Q4: If i want to change model,size,package,etc. How can I do?
A:You can contact us and we will revise according to your requirement
 
Q5:What is the terms of payment ?
A:  L/C, T/T,  Paypal(need 5% paypal fee) in advance.
 
contact me

HongKong CHINAMFG Industry Limited

HangZhou City CHINAMFG Compressor Part Co.,Ltd.

Miss Carrie

    

 

   

   

 

Web: cnjiubei

 

Lubrication Style: Lubricated
Cooling System: Air Cooling
Power Source: AC Power
Cylinder Position: Vertical
Structure Type: Closed Type
Installation Type: Stationary Type
Customization:
Available

|

air compressor

Are there special considerations for air compressor installations in remote areas?

Yes, there are several special considerations to take into account when installing air compressors in remote areas. These areas often lack access to infrastructure and services readily available in urban or well-developed regions. Here are some key considerations:

1. Power Source:

Remote areas may have limited or unreliable access to electricity. It is crucial to assess the availability and reliability of the power source for operating the air compressor. In some cases, alternative power sources such as diesel generators or solar panels may need to be considered to ensure a consistent and uninterrupted power supply.

2. Environmental Conditions:

Remote areas can present harsh environmental conditions that can impact the performance and durability of air compressors. Extreme temperatures, high humidity, dust, and corrosive environments may require the selection of air compressors specifically designed to withstand these conditions. Adequate protection, insulation, and ventilation must be considered to prevent damage and ensure optimal operation.

3. Accessibility and Transport:

Transporting air compressors to remote areas may pose logistical challenges. The size, weight, and portability of the equipment should be evaluated to ensure it can be transported efficiently to the installation site. Additionally, the availability of suitable transportation infrastructure, such as roads or air transportation, needs to be considered to facilitate the delivery and installation process.

4. Maintenance and Service:

In remote areas, access to maintenance and service providers may be limited. It is important to consider the availability of trained technicians and spare parts for the specific air compressor model. Adequate planning for routine maintenance, repairs, and troubleshooting should be in place to minimize downtime and ensure the longevity of the equipment.

5. Fuel and Lubricants:

For air compressors that require fuel or lubricants, ensuring a consistent and reliable supply can be challenging in remote areas. It is necessary to assess the availability and accessibility of fuel or lubricant sources and plan for their storage and replenishment. In some cases, alternative or renewable fuel options may need to be considered.

6. Noise and Environmental Impact:

Remote areas are often characterized by their natural beauty and tranquility. Minimizing noise levels and environmental impact should be a consideration when installing air compressors. Selecting models with low noise emissions and implementing appropriate noise reduction measures can help mitigate disturbances to the surrounding environment and wildlife.

7. Communication and Remote Monitoring:

Given the remote location, establishing reliable communication channels and remote monitoring capabilities can be essential for effective operation and maintenance. Remote monitoring systems can provide real-time data on the performance and status of the air compressor, enabling proactive maintenance and troubleshooting.

By addressing these special considerations, air compressor installations in remote areas can be optimized for reliable operation, efficiency, and longevity.

air compressor

Are there differences between single-stage and two-stage air compressors?

Yes, there are differences between single-stage and two-stage air compressors. Here’s an in-depth explanation of their distinctions:

Compression Stages:

The primary difference between single-stage and two-stage air compressors lies in the number of compression stages they have. A single-stage compressor has only one compression stage, while a two-stage compressor has two sequential compression stages.

Compression Process:

In a single-stage compressor, the entire compression process occurs in a single cylinder. The air is drawn into the cylinder, compressed in a single stroke, and then discharged. On the other hand, a two-stage compressor utilizes two cylinders or chambers. In the first stage, air is compressed to an intermediate pressure in the first cylinder. Then, the partially compressed air is sent to the second cylinder where it undergoes further compression to reach the desired final pressure.

Pressure Output:

The number of compression stages directly affects the pressure output of the air compressor. Single-stage compressors typically provide lower maximum pressure levels compared to two-stage compressors. Single-stage compressors are suitable for applications that require moderate to low air pressure, while two-stage compressors are capable of delivering higher pressures, making them suitable for demanding applications that require greater air pressure.

Efficiency:

Two-stage compressors generally offer higher efficiency compared to single-stage compressors. The two-stage compression process allows for better heat dissipation between stages, reducing the chances of overheating and improving overall efficiency. Additionally, the two-stage design allows the compressor to achieve higher compression ratios while minimizing the work done by each stage, resulting in improved energy efficiency.

Intercooling:

Intercooling is a feature specific to two-stage compressors. Intercoolers are heat exchangers placed between the first and second compression stages. They cool down the partially compressed air before it enters the second stage, reducing the temperature and improving compression efficiency. The intercooling process helps to minimize heat buildup and reduces the potential for moisture condensation within the compressor system.

Applications:

The choice between a single-stage and two-stage compressor depends on the intended application. Single-stage compressors are commonly used for light-duty applications such as powering pneumatic tools, small-scale workshops, and DIY projects. Two-stage compressors are more suitable for heavy-duty applications that require higher pressures, such as industrial manufacturing, automotive service, and large-scale construction.

It is important to consider the specific requirements of the application, including required pressure levels, duty cycle, and anticipated air demand, when selecting between a single-stage and two-stage air compressor.

In summary, the main differences between single-stage and two-stage air compressors lie in the number of compression stages, pressure output, efficiency, intercooling capability, and application suitability.

air compressor

What are the safety considerations when operating an air compressor?

Operating an air compressor requires careful attention to safety to prevent accidents, injuries, and equipment damage. Here are some important safety considerations to keep in mind:

1. Read the Manual: Before operating an air compressor, thoroughly read and understand the manufacturer’s instruction manual. Familiarize yourself with the specific safety guidelines, recommended operating procedures, and any specific precautions or warnings provided by the manufacturer.

2. Proper Ventilation: Ensure that the area where the air compressor is operated has adequate ventilation. Compressed air can produce high levels of heat and exhaust gases. Good ventilation helps dissipate heat, prevent the buildup of fumes, and maintain a safe working environment.

3. Personal Protective Equipment (PPE): Always wear appropriate personal protective equipment, including safety glasses or goggles, hearing protection, and non-slip footwear. Depending on the task, additional PPE such as gloves, a dust mask, or a face shield may be necessary to protect against specific hazards.

4. Pressure Relief: Air compressors should be equipped with pressure relief valves or devices to prevent overpressurization. Ensure that these safety features are in place and functioning correctly. Regularly inspect and test the pressure relief mechanism to ensure its effectiveness.

5. Secure Connections: Use proper fittings, hoses, and couplings to ensure secure connections between the air compressor, air tools, and accessories. Inspect all connections before operation to avoid leaks or sudden hose disconnections, which can cause injuries or damage.

6. Inspect and Maintain: Regularly inspect the air compressor for any signs of damage, wear, or leaks. Ensure that all components, including hoses, fittings, and safety devices, are in good working condition. Follow the manufacturer’s recommended maintenance schedule to keep the compressor in optimal shape.

7. Electrical Safety: If the air compressor is electric-powered, take appropriate electrical safety precautions. Use grounded outlets and avoid using extension cords unless approved for the compressor’s power requirements. Protect electrical connections from moisture and avoid operating the compressor in wet or damp environments.

8. Safe Start-Up and Shut-Down: Properly start and shut down the air compressor following the manufacturer’s instructions. Ensure that all air valves are closed before starting the compressor and release all pressure before performing maintenance or repairs.

9. Training and Competence: Ensure that operators are adequately trained and competent in using the air compressor and associated tools. Provide training on safe operating procedures, hazard identification, and emergency response protocols.

10. Emergency Preparedness: Have a clear understanding of emergency procedures and how to respond to potential accidents or malfunctions. Know the location of emergency shut-off valves, fire extinguishers, and first aid kits.

By adhering to these safety considerations and implementing proper safety practices, the risk of accidents and injuries associated with operating an air compressor can be significantly reduced. Prioritizing safety promotes a secure and productive working environment.

China Good quality Zay-250 185kw CHINAMFG China Brand Screw Air Compressor   air compressor for saleChina Good quality Zay-250 185kw CHINAMFG China Brand Screw Air Compressor   air compressor for sale
editor by CX 2023-10-26

China Standard Germany Silent Portable Rotary Screw Air Compressor (11KW 300L 8bar) with Dryer, Filters and Tank manufacturer

Product Description

HangZhou CHINAMFG Marine Equipment Co., Ltd. covers an area of 24600 square meters, located in jiangyan Economic Development Zone, fumin CHINAMFG Park, with comprehensive test bench and large lifting equipment test bench, is specialized in the production of Marine safety life-saving equipment enterprises.

The company has the leading technology, strict management, fine equipment, strictly by the China Classification Society CCSISO9001:2008 quality management system certification to ensure, the main production: Marine lifeboat/life raft landing gear, gravity inverted boom davit, free landing davit, gangway winch, lifeboat/rescue boat winch, Marine low, medium and high pressure air compressor and all types of fully enclosed/open lifeboat and rescue boat.

HangZhou CHINAMFG Marine Equipment Co., Ltd. is the production of maritime rescue equipment professional enterprise, main products are the life boat winch, the rescue boat winch, free fall type lifeboat launching device, gravity pour davit arm type, single arm liferaft lowered device, single arm boat/raft hanger and cranes, electric, pneumatic) ladder winch and Marine air compressor and various kinds of form a complete set of lifeboat.

Corporate culture: To build the world heavy industry carrier

— Corporate philosophy

Enterprise tenet: synchronizing with the world and consumers

Enterprise vision: strict management, sustainable development and satisfactory service

Enterprise values: The pursuit of quality The pursuit of Haihao

Enterprise spirit: Honesty, diligence and earnest

Haihao ships are interwoven with glory and dream, hardships and challenges, and will continue to burst out brilliant brilliance in continuous development and struggle

Haihao Marine respects every employee’s hard work, creates a level playing field for employees, and gives full play to their potential

 

 

Q: What are the available shipping methods?

A: Port location: HangZhou or ZheJiang , China Shipping to: CHINAMFG Shipping method: by sea, by air, by express Estimated delivery dates depend on specific order list, shipping service selected and receipt of cleared payment. Delivery time may vary.

 

Q: What payment methods are supported?

A: Payment: By T/T, Western Union, Money Gram for samples 100% with the order, for production,30% paid for deposit by before production arrangement, the balance to be paid before shipment. Negotiation is accepted.

 

Q: How to control the quality of CHINAMFG Products?

A: Products Material: Strictly control the material used, make sure they can meet international requested standards, and maintain long working life.
Semi-finished products inspection: We examine the proudcts100% before finished. Such as Visual Inspection, Thread testing, Leak Testing, and so on.
Production line test: Our engineers will inspect machines and lines at fixed period.
Finished Product Inspection: We do the test according to ISO19879-2005, leakage test, proof test, re-use of components, burst test, cyclic endurance test, vibration test, etc.
QCTeam:A QC team with more than 10 professional and technical personnel. To ensure 100% products checking.

 

Q: How long is the product date of delivery probably?

A: The different product, as well as the diferent run quantity can affect the date of delivery, but in ordinary circumstances product date of delivery about 30 days. Most of products have stock, contact us anytime to get more information.

 

Q: How to Custom-made(OEM/ODM)?

A: If you have a new product drawing or a sample, please send to us, and we can custom-made the product as your required. We wllalso provide our professional advices of the products to make the design to be more realized & maximize the performance.

 

Q: How about the mini order quantity?

A: We don’t have strict requirments on most items, due to we have stock. More information can send us the enquiry list, we check and reply you. For custom-made, MoQ will be adviced due to the specific product.

After-sales Service: After-Sales
Warranty: After-Sales
Lubrication Style: Oil-less
Cooling System: Air Cooling
Power Source: AC Power
Cylinder Position: Angular
Samples:
US$ 5000/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

What are the energy-saving technologies available for air compressors?

There are several energy-saving technologies available for air compressors that help improve their efficiency and reduce energy consumption. These technologies aim to optimize the operation of air compressors and minimize energy losses. Here are some common energy-saving technologies used:

1. Variable Speed Drive (VSD) Compressors:

VSD compressors are designed to adjust the motor speed according to the compressed air demand. By varying the motor speed, these compressors can match the output to the actual air requirement, resulting in energy savings. VSD compressors are particularly effective in applications with varying air demands, as they can operate at lower speeds during periods of lower demand, reducing energy consumption.

2. Energy-Efficient Motors:

The use of energy-efficient motors in air compressors can contribute to energy savings. High-efficiency motors, such as those with premium efficiency ratings, are designed to minimize energy losses and operate more efficiently than standard motors. By using energy-efficient motors, air compressors can reduce energy consumption and achieve higher overall system efficiency.

3. Heat Recovery Systems:

Air compressors generate a significant amount of heat during operation. Heat recovery systems capture and utilize this wasted heat for other purposes, such as space heating, water heating, or preheating process air or water. By recovering and utilizing the heat, air compressors can provide additional energy savings and improve overall system efficiency.

4. Air Receiver Tanks:

Air receiver tanks are used to store compressed air and provide a buffer during periods of fluctuating demand. By using appropriately sized air receiver tanks, the compressed air system can operate more efficiently. The tanks help reduce the number of starts and stops of the air compressor, allowing it to run at full load for longer periods, which is more energy-efficient than frequent cycling.

5. System Control and Automation:

Implementing advanced control and automation systems can optimize the operation of air compressors. These systems monitor and adjust the compressed air system based on demand, ensuring that only the required amount of air is produced. By maintaining optimal system pressure, minimizing leaks, and reducing unnecessary air production, control and automation systems help achieve energy savings.

6. Leak Detection and Repair:

Air leaks in compressed air systems can lead to significant energy losses. Regular leak detection and repair programs help identify and fix air leaks promptly. By minimizing air leakage, the demand on the air compressor is reduced, resulting in energy savings. Utilizing ultrasonic leak detection devices can help locate and repair leaks more efficiently.

7. System Optimization and Maintenance:

Proper system optimization and routine maintenance are essential for energy savings in air compressors. This includes regular cleaning and replacement of air filters, optimizing air pressure settings, ensuring proper lubrication, and conducting preventive maintenance to keep the system running at peak efficiency.

By implementing these energy-saving technologies and practices, air compressor systems can achieve significant energy efficiency improvements, reduce operational costs, and minimize environmental impact.

air compressor

What is the role of air compressors in manufacturing and industrial processes?

Air compressors play a crucial role in various manufacturing and industrial processes, providing a reliable source of compressed air that powers a wide range of equipment and tools. Here are some key roles of air compressors in manufacturing and industrial settings:

1. Pneumatic Tools and Equipment:

Air compressors power a wide range of pneumatic tools and equipment used in manufacturing processes. These tools include impact wrenches, air drills, sanders, grinders, nail guns, and spray guns. Compressed air provides the necessary force and energy for these tools, enabling efficient and precise operations.

2. Automation and Control Systems:

Compressed air is used in automation and control systems within manufacturing facilities. Pneumatic actuators and valves use compressed air to control the movement of machinery and components. These systems are widely used in assembly lines, packaging operations, and material handling processes.

3. Air Blowing and Cleaning:

Compressed air is employed for blowing and cleaning applications in manufacturing and industrial processes. Air blowguns and air nozzles are used to remove debris, dust, and contaminants from surfaces, machinery, and products. Compressed air is also used for drying, cooling, and purging operations.

4. Air Separation and Gas Generation:

Air compressors are used in air separation plants to generate industrial gases such as nitrogen, oxygen, and argon. These gases are essential for various industrial processes, including metal fabrication, chemical production, and food packaging.

5. HVAC Systems:

Compressed air is utilized in heating, ventilation, and air conditioning (HVAC) systems. It powers pneumatic actuators for damper control, pneumatic controls for pressure regulation, and pneumatic valves for flow control in HVAC applications.

6. Air Compression for Storage and Transport:

Compressed air is used for storage and transport purposes in manufacturing and industrial settings. It is often used to pressurize storage tanks or containers that hold gases or liquids. Compressed air also facilitates the transfer of materials through pipelines and pneumatic conveying systems.

7. Process Instrumentation:

Compressed air is utilized in process instrumentation and control systems. It powers pneumatic instruments such as pressure gauges, flow meters, and control valves. These instruments play a critical role in monitoring and regulating various parameters in industrial processes.

8. Material Handling and Pneumatic Conveying:

In manufacturing and industrial facilities, compressed air is used for material handling and pneumatic conveying systems. It enables the movement of bulk materials such as powders, granules, and pellets through pipelines, facilitating efficient and controlled material transfer.

Overall, air compressors are vital components in manufacturing and industrial processes, providing a versatile and efficient source of power for a wide range of applications. The specific role of air compressors may vary depending on the industry, process requirements, and operational needs.

air compressor

How does an air compressor work?

An air compressor works by using mechanical energy to compress and pressurize air, which is then stored and used for various applications. Here’s a detailed explanation of how an air compressor operates:

1. Air Intake: The air compressor draws in ambient air through an intake valve or filter. The air may pass through a series of filters to remove contaminants such as dust, dirt, and moisture, ensuring the compressed air is clean and suitable for its intended use.

2. Compression: The intake air enters a compression chamber, typically consisting of one or more pistons or a rotating screw mechanism. As the piston moves or the screw rotates, the volume of the compression chamber decreases, causing the air to be compressed. This compression process increases the pressure and reduces the volume of the air.

3. Pressure Build-Up: The compressed air is discharged into a storage tank or receiver where it is held at a high pressure. The tank allows the compressed air to be stored for later use and helps to maintain a consistent supply of compressed air, even during periods of high demand.

4. Pressure Regulation: Air compressors often have a pressure regulator that controls the output pressure of the compressed air. This allows the user to adjust the pressure according to the requirements of the specific application. The pressure regulator ensures that the compressed air is delivered at the desired pressure level.

5. Release and Use: When compressed air is needed, it is released from the storage tank or receiver through an outlet valve or connection. The compressed air can then be directed to the desired application, such as pneumatic tools, air-operated machinery, or other pneumatic systems.

6. Continued Operation: The air compressor continues to operate as long as there is a demand for compressed air. When the pressure in the storage tank drops below a certain level, the compressor automatically starts again to replenish the compressed air supply.

Additionally, air compressors may include various components such as pressure gauges, safety valves, lubrication systems, and cooling mechanisms to ensure efficient and reliable operation.

In summary, an air compressor works by drawing in air, compressing it to increase its pressure, storing the compressed air, regulating the output pressure, and releasing it for use in various applications. This process allows for the generation of a continuous supply of compressed air for a wide range of industrial, commercial, and personal uses.

China Standard Germany Silent Portable Rotary Screw Air Compressor (11KW 300L 8bar) with Dryer, Filters and Tank   manufacturer China Standard Germany Silent Portable Rotary Screw Air Compressor (11KW 300L 8bar) with Dryer, Filters and Tank   manufacturer
editor by CX 2023-10-25

China OEM 22- 250kw 10bar Standard Oil-Injected Direct Driven Variable Frequency Twin Screw Air Compressor with Hot selling

Product Description

REDUCE ENERGY CONSUMPTION

Under different conditions,the demand for gas will float.Through a large number of research and calculation of marketdemandCha nun confirmed it.Only about 10% of applications require stable air supplyTherefore,frequency conversioncompressor can play a greater role in energy saving.
Energy cost often accounts for 70% of the life cycle cost of a compressor. The production of compressed air may account for 40% of all electricity costs in the plant.In almost every factory,the gas consumption will vary with different time periods,with its high and low CHINAMFG periods. permanent magnet variable frequency screw air compressor can supply glass completely according to the requirements of gas consumption,which can not only save a lot of energy, but also protect theenvironment for future generations.
INTERIOR STRUCTURE

CUSTOM OIL
COOLED MOTOR
First-stage energy-efficient motor,Low Noise,IP65 protection grade

 

AUTOMOTIVE GRADE
PERMANENT MAGNET MOTOR
IE4 high efficiency permanent magnet motor.
AUTOMOTIVE PERMANENT MAGNET MOTOR ForN38UH high grade permanent magnet, IP67 protection grade, and fully enclosed structure uniquevacuum epoxy dipping paint,effectively guaranteeing the stable operation of unit.

 

CHANUN
CUSTOM CONVERTER
Permanent magnet variable-frequency conversion technology, wide voltage. energy-saving ,with a small impact on the power grid.

 

7 INCH TOUCH SCREEN

Large touch screen.all-round protection monitoring with functions of motor start/stopcontrol, operation control:reversal protection of air compressor: and multi-point temperature detection and control protection.

 

HIGH MOBILITY (OPTIONAL)

Easy and flexible to rotate. so that the air compressor is able to move conveniently andquickly (optional)

ZheJiang CHINAMFG Machinery Manufacturing Co. , Ltd. is located in HangZhou, ZheJiang .CHINAMFG is a comprehensive screw air compressor manufacturer that engaged in R & D, design, production and sales. It has a plant of 20,000 square meters, including a large production workshop,a comprehensive first-class exhibition hall and a testing laboratory.
 

Dukas has excellent mechanical engineering designers, an experienced staff team and a professional management team. The production concept focuses on energy-saving and is committed to perfecting and improving the technological process in order to get the core technology of super frequency energy-saving, achieving the characteristics of mute, durability, power saving and safety.

The company has 9 series of products with multiple models. Including Fixed speed air compressor, PM VSD air compressor, PM VSD two-stage air compressor, 4-in-1 air compressor, Oil free water lubrcating air compressor, Diesel portable screw air compressor, Electric portable screw air compressor, Air dryer, Adsorption machine and the matching spare parts.

Dukas adheres to the business philosophy of cooperation and mutual benefit to provide a one-stop service for every customer!
 

Dukas air compressors not only cover the domestic market but also are exported to more than 20 countries and regions such as South Africa, Australia, Thailand, Russia, Argentina, Canada and so on.
Dukas products have won a good reputation from users for their excellent quality and style. The company has always adhered to the concept of quality first, service first and dedication to providing every customer with excellent products and meticulous after-sales service!
 

Dukas warmly welcome customers to visit our factory and establish a wide range of cooperation!

Frequency Asked Question:

Q1: Are you factory or trade company?  
A1: We are factory.

Q2: What the exactly address of your factory? 
A2: Our Factory is Located in Xihu (West Lake) Dis. CountyHangZhou CityZheJiang  Province, China.

Q3: Will you provide spare parts of your products? 
A3: Yes, We provide all parts to customer, so you can do repair or maintenance without trouble.

Q4: Can you accept OEM orders? 
A4: Yes, with professional design team, OEM orders are highly welcome.

Q5: How long will you take to arrange production?
A5: Immediate delivery for stock products.380V 50HZ we can delivery the goods within 3-15 days. Other voltage or other color we will delivery within 25-30 days.

Q6: Warranty terms of your machine?
A6Two years warranty for the machine and technical support always according to your needs.

Q7: Can you provide the best price?
A7:According to your order, we will provide you the best price.

After-sales Service: 24 Hours
Warranty: 2 Year
Lubrication Style: Lubricated
Cooling System: Air Cooling
Power Source: AC Power
Cylinder Position: Horizontal
Customization:
Available

|

air compressor

What are the advantages of using rotary vane compressors?

Rotary vane compressors offer several advantages that make them a popular choice for various applications. These compressors are widely used in industries where a reliable and efficient source of compressed air is required. Here are the advantages of using rotary vane compressors:

1. Compact and Lightweight:

Rotary vane compressors are typically compact and lightweight compared to other types of compressors. Their compact design makes them suitable for installations where space is limited, such as in small workshops or mobile applications. The lightweight nature of these compressors allows for easy transportation and maneuverability.

2. High Efficiency:

Rotary vane compressors are known for their high efficiency. The design of the vanes and the compression chamber allows for smooth and continuous compression, resulting in minimal energy losses. This efficiency translates into lower energy consumption and reduced operating costs over time.

3. Quiet Operation:

Rotary vane compressors operate with relatively low noise levels. The design of the compressor, including the use of vibration damping materials and sound insulation, helps to minimize noise and vibrations during operation. This makes rotary vane compressors suitable for applications where noise reduction is important, such as in indoor environments or noise-sensitive areas.

4. Oil Lubrication:

Many rotary vane compressors utilize oil lubrication, which provides several benefits. The oil lubrication helps to reduce wear and friction between the moving parts, resulting in extended compressor life and improved reliability. It also contributes to better sealing and improved efficiency by minimizing internal leakage.

5. Versatile Applications:

Rotary vane compressors are versatile and can be used in a wide range of applications. They are suitable for both industrial and commercial applications, including automotive workshops, small manufacturing facilities, dental offices, laboratories, and more. They can handle various compressed air requirements, from light-duty tasks to more demanding applications.

6. Easy Maintenance:

Maintenance of rotary vane compressors is relatively straightforward. Routine maintenance tasks typically include oil changes, filter replacements, and periodic inspection of vanes and seals. The simplicity of the design and the availability of replacement parts make maintenance and repairs easier and more cost-effective.

These advantages make rotary vane compressors an attractive choice for many applications, providing reliable and efficient compressed air solutions.

air compressor

Can air compressors be integrated into automated systems?

Yes, air compressors can be integrated into automated systems, providing a reliable and versatile source of compressed air for various applications. Here’s a detailed explanation of how air compressors can be integrated into automated systems:

Pneumatic Automation:

Air compressors are commonly used in pneumatic automation systems, where compressed air is utilized to power and control automated machinery and equipment. Pneumatic systems rely on the controlled release of compressed air to generate linear or rotational motion, actuating valves, cylinders, and other pneumatic components. By integrating an air compressor into the system, a continuous supply of compressed air is available to power the automation process.

Control and Regulation:

In automated systems, air compressors are often connected to a control and regulation system to manage the compressed air supply. This system includes components such as pressure regulators, valves, and sensors to monitor and adjust the air pressure, flow, and distribution. The control system ensures that the air compressor operates within the desired parameters and provides the appropriate amount of compressed air to different parts of the automated system as needed.

Sequential Operations:

Integration of air compressors into automated systems enables sequential operations to be carried out efficiently. Compressed air can be used to control the timing and sequencing of different pneumatic components, ensuring that the automated system performs tasks in the desired order and with precise timing. This is particularly useful in manufacturing and assembly processes where precise coordination of pneumatic actuators is required.

Energy Efficiency:

Air compressors can contribute to energy-efficient automation systems. By incorporating energy-saving features such as Variable Speed Drive (VSD) technology, air compressors can adjust their power output according to the demand, reducing energy consumption during periods of low activity. Additionally, efficient control and regulation systems help optimize the use of compressed air, minimizing waste and improving overall energy efficiency.

Monitoring and Diagnostics:

Integration of air compressors into automated systems often includes monitoring and diagnostic capabilities. Sensors and monitoring devices can be installed to collect data on parameters such as air pressure, temperature, and system performance. This information can be used for real-time monitoring, preventive maintenance, and troubleshooting, ensuring the reliable operation of the automated system.

When integrating air compressors into automated systems, it is crucial to consider factors such as the specific requirements of the automation process, the desired air pressure and volume, and the compatibility of the compressor with the control and regulation system. Consulting with experts in automation and compressed air systems can help in designing an efficient and reliable integration.

In summary, air compressors can be seamlessly integrated into automated systems, providing the necessary compressed air to power and control pneumatic components, enabling sequential operations, and contributing to energy-efficient automation processes.

air compressor

What maintenance is required for air compressors?

Maintaining air compressors is essential to ensure their optimal performance, longevity, and safe operation. Regular maintenance helps prevent breakdowns, improves efficiency, and reduces the risk of accidents. Here are some key maintenance tasks for air compressors:

1. Regular Inspection: Perform visual inspections of the air compressor to identify any signs of wear, damage, or leaks. Inspect the compressor, hoses, fittings, and connections for any abnormalities. Pay attention to oil leaks, loose bolts, and worn-out components.

2. Oil Changes: If your air compressor has an oil lubrication system, regular oil changes are crucial. Follow the manufacturer’s recommendations for the frequency of oil changes and use the recommended oil type. Dirty or degraded oil can impact compressor performance and lead to premature wear.

3. Air Filter Cleaning or Replacement: Clean or replace the air filter regularly to ensure proper air intake and prevent contaminants from entering the compressor. Clogged or dirty filters can restrict airflow and reduce efficiency.

4. Drain Moisture: Air compressors produce moisture as a byproduct of the compression process. Accumulated moisture in the tank can lead to rust and corrosion. Drain the moisture regularly from the tank to prevent damage. Some compressors have automatic drains, while others require manual draining.

5. Belt Inspection and Adjustment: If your compressor has a belt-driven system, inspect the belts for signs of wear, cracks, or tension issues. Adjust or replace the belts as necessary to maintain proper tension and power transmission.

6. Tank Inspection: Inspect the compressor tank for any signs of corrosion, dents, or structural issues. A damaged tank can be hazardous and should be repaired or replaced promptly.

7. Valve Maintenance: Check the safety valves, pressure relief valves, and other valves regularly to ensure they are functioning correctly. Test the valves periodically to verify their proper operation.

8. Motor and Electrical Components: Inspect the motor and electrical components for any signs of damage or overheating. Check electrical connections for tightness and ensure proper grounding.

9. Keep the Area Clean: Maintain a clean and debris-free area around the compressor. Remove any dirt, dust, or obstructions that can hinder the compressor’s performance or cause overheating.

10. Follow Manufacturer’s Guidelines: Always refer to the manufacturer’s manual for specific maintenance instructions and recommended service intervals for your air compressor model. They provide valuable information on maintenance tasks, lubrication requirements, and safety precautions.

Regular maintenance is vital to keep your air compressor in optimal condition and extend its lifespan. It’s also important to note that maintenance requirements may vary depending on the type, size, and usage of the compressor. By following a comprehensive maintenance routine, you can ensure the reliable operation of your air compressor and maximize its efficiency and longevity.

China OEM 22- 250kw 10bar Standard Oil-Injected Direct Driven Variable Frequency Twin Screw Air Compressor   with Hot sellingChina OEM 22- 250kw 10bar Standard Oil-Injected Direct Driven Variable Frequency Twin Screw Air Compressor   with Hot selling
editor by CX 2023-10-25

China Custom Beautiful Appearance 18bar Mini Screw Air Compressor for Cable air compressor parts

Product Description

Product Description

1. The main parts are made by famous enterprises at home and abroad with reliable quality.

2. High energy efficiency, low energy consumption, actively respond to the national call for energy conservation and emission reduction. Through the comparison of data PK in recent 2 years, under the same flow, the power consumption of low-voltage two-stage is smaller (reduced by 10%-15%).

* Under the same power consumption, the two-stage flow is larger (increased by 10%-20%).

* At the same flow rate, the power consumption of medium and high voltage two-stage is smaller (reduced by 25%-35%).

* With the same power consumption, the two-stage flow is larger (increased by 25-35%).

3. Gull-wing wide-open door design ensures wide operating space, convenient maintenance, saving time and improving efficiency.

4. With control panel, the operation state of equipment is clear to ensure man-machine safety.

5. Applicable for hydropower, railway, mine, highway, grouting, cable.

6. Beautiful and elegant, reliable performance, high cost performance, compact machine, and flexible movement.

Product Features

1. The enlarged plastic air filter is designed to be used for more than 5000 hours with the filter element accuracy of 3 microns. Dry, heavy duty, long life design, easy to clean and replace.

2. SAE standard stainless steel pipe design, low resistance, strong corrosion resistance, superior performance, completely eliminate oil leakage, air leakage, and water leakage problems.

3. Adopting the most advanced host machine in China, adhering to the exquisite manufacturing technology of Germany, adopting the low-pressure and high-efficiency tooth shape with the highest efficiency, the optimized runner design, the big rotor, low speed, high efficiency and high reliability provide your air compressor with a powerful heart, thus achieving efficiency and energy-saving synchronization.

4. The enlarged horizontal structure cooler not only improves the cooler performance, but also facilitates the maintenance, thoroughly solving the unit high temperature problem

5. Increased oil and gas storage tank to ensure the safe and reliable operation.

6. Oversized fuel tank ensures all-day operation of diesel.

7. Oversized fuel filters ensure the cleanliness of diesel entering the engine. Extend the service life of diesel engine.

8. Super large, super strong walking system, strong bearing, and mobile flexibility.

Product Parameters

Model   HF19/18(J) HF20/18(J)
Compressor Type   Screw two-stage compression air compressor Screw two-stage compression air compressor
Gas displacement m3/min 19 20
Discharge pressure bar 18 18
Drive mode   Direct coupling, diesel engine driven Direct coupling, diesel engine driven
Oil and gas tank volume L 150 150
Lubricating oil capacity L 90 90
         
Model   6CTA8.3 6CTA8.3
Type   Liquid cooled, 4 stroke, direct injection Liquid cooled, 4 stroke, direct injection
Air cylinder QTY   6 6
Rated power kw 194 194
Rated rotation speed rpm 1900 2200
Lubricating oil capacity L 24 24
Cooling water consumption L 70 70
Fuel tank volume L 380 380
Dimension & weight Length mm 4200 4200
Width mm 1950 1980
Height mm 2100 2100
Net weight kg 4000 4000
Outlet exhaust valve   1*G2″, 1*G1″ 1*G2″, 1*G1″
Optional for preheater

Working Site

Company Profile

FAQ

1.Are you trading company or manufacturer?
We are professional manufacturer, and our factory mainly produce water well drilling rig, core drilling rig, DTH drilling rig, piling rig, etc. Our products have been exported to more than 50 countries of Asia, South America, Africa, and get a good reputation in the world.

2. Are your products qualified?
Yes, our products all have gained ISO certificate,and we have specialized quality inspection department for checking every machine before leaving our factory.

3.How about your machine quality? 
All of our machines hold the ISO, QC and TUV certificate, and each set of machine must pass a great number of strict testing in order to offer the best quality to our customers.

4. Do you have after service?
Yes, we have special service team which will offer you professional guidance. If you need, we can send our engineer to your worksite and provid the training for your staff.

5. What about the qaulity warranty? 
We offer one-year quality warranty for machines’ main body.

6. How long can you deliver the machine? 
Generally, we can deliver the machine in 7 days.

After-sales Service: Online Support, Field Maintenance
Warranty: 1 Year
Lubrication Style: Lubricated
Cooling System: Air Cooling
Power Source: Diesel Engine
Cylinder Position: Horizontal
Samples:
US$ 15000/Set
1 Set(Min.Order)

|
Request Sample

air compressor

What is the role of air compressors in power generation?

Air compressors play a significant role in power generation, supporting various operations and equipment within the industry. Here are some key roles of air compressors in power generation:

1. Combustion Air Supply:

Air compressors are used to supply compressed air for the combustion process in power generation. In fossil fuel power plants, such as coal-fired or natural gas power plants, compressed air is required to deliver a steady flow of air to the burners. The compressed air helps in the efficient combustion of fuel, enhancing the overall performance and energy output of the power plant.

2. Instrumentation and Control:

Air compressors are utilized for instrumentation and control systems in power generation facilities. Compressed air is used to operate pneumatic control valves, actuators, and other pneumatic devices that regulate the flow of steam, water, and gases within the power plant. The reliable and precise control provided by compressed air ensures efficient and safe operation of various processes and equipment.

3. Cooling and Ventilation:

In power generation, air compressors are involved in cooling and ventilation applications. Compressed air is used to drive air-operated cooling fans and blowers, providing adequate airflow for cooling critical components such as generators, transformers, and power electronics. The compressed air also assists in maintaining proper ventilation in control rooms, substations, and other enclosed spaces, helping to dissipate heat and ensure a comfortable working environment.

4. Cleaning and Maintenance:

Air compressors are employed for cleaning and maintenance tasks in power generation facilities. Compressed air is utilized to blow away dust, dirt, and debris from equipment, machinery, and electrical panels. It helps in maintaining the cleanliness and optimal performance of various components, reducing the risk of equipment failure and improving overall reliability.

5. Pneumatic Tools and Equipment:

In power generation plants, air compressors provide the necessary compressed air for operating pneumatic tools and equipment. These tools include impact wrenches, pneumatic drills, grinders, and sandblasting equipment, which are utilized for installation, maintenance, and repair tasks. The high-pressure air generated by compressors enables efficient and reliable operation of these tools, enhancing productivity and reducing manual effort.

6. Nitrogen Generation:

Sometimes, air compressors are used in power generation for nitrogen generation. Compressed air is passed through a nitrogen generator system, which separates nitrogen from other components of air, producing a high-purity nitrogen gas stream. Nitrogen is commonly used in power plant applications, such as purging systems, blanketing in transformers, and generator cooling, due to its inert properties and low moisture content.

7. Start-up and Emergency Systems:

Air compressors are an integral part of start-up and emergency systems in power generation. Compressed air is utilized to power pneumatic starters for gas turbines, providing the initial rotation needed to start the turbine. In emergency situations, compressed air is also used to actuate emergency shutdown valves, safety systems, and fire suppression equipment, ensuring the safe operation and protection of the power plant.

Overall, air compressors contribute to the efficient and reliable operation of power generation facilities, supporting combustion processes, control systems, cooling, cleaning, and various other applications critical to the power generation industry.

air compressor

What is the role of air compressors in manufacturing and industrial processes?

Air compressors play a crucial role in various manufacturing and industrial processes, providing a reliable source of compressed air that powers a wide range of equipment and tools. Here are some key roles of air compressors in manufacturing and industrial settings:

1. Pneumatic Tools and Equipment:

Air compressors power a wide range of pneumatic tools and equipment used in manufacturing processes. These tools include impact wrenches, air drills, sanders, grinders, nail guns, and spray guns. Compressed air provides the necessary force and energy for these tools, enabling efficient and precise operations.

2. Automation and Control Systems:

Compressed air is used in automation and control systems within manufacturing facilities. Pneumatic actuators and valves use compressed air to control the movement of machinery and components. These systems are widely used in assembly lines, packaging operations, and material handling processes.

3. Air Blowing and Cleaning:

Compressed air is employed for blowing and cleaning applications in manufacturing and industrial processes. Air blowguns and air nozzles are used to remove debris, dust, and contaminants from surfaces, machinery, and products. Compressed air is also used for drying, cooling, and purging operations.

4. Air Separation and Gas Generation:

Air compressors are used in air separation plants to generate industrial gases such as nitrogen, oxygen, and argon. These gases are essential for various industrial processes, including metal fabrication, chemical production, and food packaging.

5. HVAC Systems:

Compressed air is utilized in heating, ventilation, and air conditioning (HVAC) systems. It powers pneumatic actuators for damper control, pneumatic controls for pressure regulation, and pneumatic valves for flow control in HVAC applications.

6. Air Compression for Storage and Transport:

Compressed air is used for storage and transport purposes in manufacturing and industrial settings. It is often used to pressurize storage tanks or containers that hold gases or liquids. Compressed air also facilitates the transfer of materials through pipelines and pneumatic conveying systems.

7. Process Instrumentation:

Compressed air is utilized in process instrumentation and control systems. It powers pneumatic instruments such as pressure gauges, flow meters, and control valves. These instruments play a critical role in monitoring and regulating various parameters in industrial processes.

8. Material Handling and Pneumatic Conveying:

In manufacturing and industrial facilities, compressed air is used for material handling and pneumatic conveying systems. It enables the movement of bulk materials such as powders, granules, and pellets through pipelines, facilitating efficient and controlled material transfer.

Overall, air compressors are vital components in manufacturing and industrial processes, providing a versatile and efficient source of power for a wide range of applications. The specific role of air compressors may vary depending on the industry, process requirements, and operational needs.

air compressor

Are there air compressors specifically designed for high-pressure applications?

Yes, there are air compressors specifically designed for high-pressure applications. These compressors are engineered to generate and deliver compressed air at significantly higher pressures than standard air compressors. Here are some key points about high-pressure air compressors:

1. Pressure Range: High-pressure air compressors are capable of producing compressed air at pressures typically ranging from 1000 to 5000 psi (pounds per square inch) or even higher. This is considerably higher than the typical range of 100 to 175 psi for standard air compressors.

2. Construction: High-pressure aircompressors feature robust construction and specialized components to withstand the higher pressures involved. They are designed with reinforced cylinders, pistons, valves, and seals that can handle the increased stress and prevent leaks or failures under high-pressure conditions.

3. Power: Generating high-pressure compressed air requires more power than standard compressors. High-pressure air compressors often have larger motors or engines to provide the necessary power to achieve the desired pressure levels.

4. Applications: High-pressure air compressors are utilized in various industries and applications where compressed air at elevated pressures is required. Some common applications include:

  • Industrial manufacturing processes that involve high-pressure air for operations such as air tools, pneumatic machinery, and equipment.
  • Gas and oil exploration and production, where high-pressure air is used for well drilling, well stimulation, and enhanced oil recovery techniques.
  • Scuba diving and underwater operations, where high-pressure air is used for breathing apparatus and underwater tools.
  • Aerospace and aviation industries, where high-pressure air is used for aircraft systems, testing, and pressurization.
  • Fire services and firefighting, where high-pressure air compressors are used to fill breathing air tanks for firefighters.

5. Safety Considerations: Working with high-pressure air requires adherence to strict safety protocols. Proper training, equipment, and maintenance are crucial to ensure the safe operation of high-pressure air compressors. It is important to follow manufacturer guidelines and industry standards for high-pressure applications.

When selecting a high-pressure air compressor, consider factors such as the desired pressure range, required flow rate, power source availability, and the specific application requirements. Consult with experts or manufacturers specializing in high-pressure compressed air systems to identify the most suitable compressor for your needs.

High-pressure air compressors offer the capability to meet the demands of specialized applications that require compressed air at elevated pressures. Their robust design and ability to deliver high-pressure air make them essential tools in various industries and sectors.

China Custom Beautiful Appearance 18bar Mini Screw Air Compressor for Cable   air compressor partsChina Custom Beautiful Appearance 18bar Mini Screw Air Compressor for Cable   air compressor parts
editor by CX 2023-10-24

China manufacturer High Performance Silent 132kw 10bar Oil Injected Direct Driven Screw Air Compressor air compressor lowes

Product Description

Model SGV 132
Type of Cooling   Air Cooling/Water cooling
Working Pressure psig 102 116 145 174
bar 7 8 10 12
Air Delivery cfm 865.1 819.2 723.9 614.4
m3/min 24.5 23.2 20.5 17.4
Motor Power kw/hp 132/175
Cooling Method   Air Cooling/Water Coolin
Type of Driving   Driect driven
Dimension(mm) L 2700
W 1470
H 1840
Weight KG 2900
Air Outlet Pipe
Diameter
  DN65
Voltage   380V / 3PH / 50HZ / 60HZ
220V / 3PH / 50HZ / 60HZ
440V / 3PH / 50HZ / 60HZ
415V / 3PH / 50HZ / 60HZ
Can be customized
Exhaust Oil Volum   <3ppm
Noise db 65±2
Outlet Air Humidity ºC ambient temperature+15ºC

Technical Data of Direct Drive Electric Motor Screw Air Compressors

Model Working Pressure Capacity Motor Power Dimension
(mm)
Net Weight
(KGS)
Air Outlet Pipe Diameter
Psi bar Cfm m3/min kw/hp
SGV08 102 7 42.4 1.2 7.5/10 900*670*850 200 1/2”
116 8 38.8 1.1
145 10 33.5 0.95
174 10 28.3 0.8
SGV11 102 7 58.3 1.65 11/15 1080*750*1571 280 3/4”
116 8 53 1.5
145 10 45.9 1.3
174 12 38.8 1.1
SGV15 102 7 88.3 2.5 15/20 1080*750*1571 300 3/4”
116 8 81.2 2.3
145 10 74.2 2.1
174 12 67.1 1.9
SGV18 102 7 113 3.2 18.5/25 1380*850*1185 430 1”
116 8 105.9 3
145 10 95.3 2.7
174 12 84.7 2.4
SGV22 100 7 134.2 3.8 22/30 1380*850*1185 450 1”
116 8 127.1 3.6
145 10 113 3.2
174 12 95.3 2.7
SGV30 102 7 187.1 5.3 30/40 1380*850*1185 500 1”
116 8 176.6 5
145 10 158.9 4.5
174 12 141.2 4
SGV37 102 7 240.1 6.8 37/50 1500*1000*1345 650 11/2″
116 8 218.9 6.2
145 10 197.7 5.6
174 12 176.6 5
SGV45 102 7 261.3 7.4 45/60 1500*1000*1345 680 11/2″
116 8 247.2 7
145 10 218.9 6.2
174 12 197.7 5.6
SGV55 102 7 353.1 10 55/75 1800*1250*1670 1150 2″
116 8 339 9.6
145 10 300.1 8.5
174 12 268.4 7.6
SGV75 102 7 473.2 13.4 75/100 1800*1250*1670 1200 2″
116 8 444.9 12.6
145 10 395.5 11.2
174 12 353.1 10
SGV90 102 7 572 16.2 90/120 1800*1250*1670 1350 2″
116 8 529.7 15
145 10 487.3 13.8
174 12 434.3 12.3
SGV110 102 7 741.5 21 110/150 2300*1470*1840 1800 2 1/2”
116 8 699.1 19.8
145 10 614.4 17.4
174 12 522.6 14.8
SGV132 102 7 865.1 24.5 132/175 2300*1470*1840 1850 2 1/2”
116 8 819.2 23.2
145 10 723.9 20.5
174 12 614.4 17.4
SGV160 102 7 1013.4 28.7 160/200 2300*1470*1840 2000 2 1/2”
116 8 974.6 27.6
145 10 868.6 24.6
174 12 759.2 21.5
SGV185 102 7 1129.9 32 185/250 3150*1980*2152 3500 DN85
116 8 1073.4 30.4
145 10 967.5 27.4
174 12 875.7 24.8
SGV220 102 7 1271.2 36 220/300 3150*1980*2152 3800 DN85
116 8 1211.1 34.3
145 10 1066.4 30.2
174 12 978.1 27.7
SGV250 102 7 1483 42 250/350 3150*1980*2152 4000 DN85
116 8 1430.1 40.5
145 10 1348.8 38.2
174 12 1218.2 34.5
Motor Protection Class: IP23/IP54/IP55 or as per your required
Voltage: 380V/50Hz/3ph, 380V/60Hz/3ph, 220V/50Hz/3ph, 220V/60Hz/3ph, 440V/50Hz/3ph, 440V/60Hz/3ph, or as per your requests.


Q1: What is the rotor speed for the air end?
A1: 2980rmp.

Q2: What’s your lead time?
A2: usually, 5-7 days. (OEM orders: 15days)

Q3: Can you offer water cooled air compressor?
A3: Yes, we can (normally, air cooled type).

Q4: What’s the payment term?
A4: T/T, L/C, Western Union, etc. Also we could accept USD, RMB, and other currency.

Q5: Do you accept customized voltage?
A5: Yes. 380V/50Hz/3ph, 380V/60Hz/3ph, 220V/50Hz/3ph, 220V/60Hz/3ph, 440V/50Hz/3ph, 440V/60Hz/3ph, or as per your requests.

Q6: What is your warranty for air compressor?
A6: One year for the whole air compressor(not including the consumption spare parts) and technical supports can be provided according to your needs.

Q7: Can you accept OEM orders?
A7: Yes, OEM orders are warmly welcome.

Q8: How about your customer service and after-sales service?
A8: 24hrs on-line support, 48hrs problem solved promise.

Q9: Do you have spare parts in stock?
A9: Yes, we do.

Q10: What kind of initial lubrication oil you used in air compressor?
A10: TOTAL 46# mineral oil.

If you have any questions, please don’t hesitate to contact us. Thanks!  

Lubrication Style: Lubricated
Cooling System: Air Cooling
Power Source: AC Power
Cylinder Position: Vertical
Structure Type: Closed Type
Installation Type: Stationary Type
Customization:
Available

|

air compressor

How are air compressors utilized in pharmaceutical manufacturing?

Air compressors play a crucial role in pharmaceutical manufacturing, where they are utilized for various critical applications. The pharmaceutical industry requires a reliable source of clean and compressed air to ensure the safety, efficiency, and quality of its processes. Here’s an overview of how air compressors are utilized in pharmaceutical manufacturing:

1. Manufacturing Processes:

Air compressors are used in numerous manufacturing processes within the pharmaceutical industry. Compressed air is employed for tasks such as mixing and blending of ingredients, granulation, tablet compression, coating, and encapsulation of pharmaceutical products. The controlled delivery of compressed air facilitates precise and consistent manufacturing processes, ensuring the production of high-quality pharmaceuticals.

2. Instrumentation and Control Systems:

Pharmaceutical manufacturing facilities rely on compressed air for powering instrumentation and control systems. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control temperature and pressure, and automate various processes. The clean and dry nature of compressed air makes it ideal for maintaining the integrity and accuracy of these critical control mechanisms.

3. Packaging and Filling:

Air compressors are employed in pharmaceutical packaging and filling processes. Compressed air is used to power machinery and equipment for bottle cleaning, labeling, capping, and sealing of pharmaceutical products. Compressed air provides the necessary force and precision for efficient and reliable packaging, ensuring product safety and compliance.

4. Cleanroom Environments:

Pharmaceutical manufacturing often takes place in controlled cleanroom environments to prevent contamination and maintain product quality. Air compressors are used to supply clean and filtered compressed air to these cleanrooms, ensuring a controlled and sterile environment for the production of pharmaceuticals. Compressed air is also utilized in cleanroom air showers and air curtains for personnel and material decontamination.

5. Laboratory Applications:

In pharmaceutical laboratories, air compressors are utilized for various applications. Compressed air is used in laboratory instruments, such as gas chromatographs, mass spectrometers, and other analytical equipment. It is also employed in clean air cabinets, fume hoods, and laminar flow benches, providing a controlled and clean environment for testing, analysis, and research.

6. HVAC Systems:

Air compressors are involved in heating, ventilation, and air conditioning (HVAC) systems in pharmaceutical manufacturing facilities. Compressed air powers the operation of HVAC controls, dampers, actuators, and air handling units, ensuring proper air circulation, temperature control, and environmental conditions in various manufacturing areas.

By utilizing air compressors in pharmaceutical manufacturing, the industry can maintain strict quality standards, enhance operational efficiency, and ensure the safety and efficacy of pharmaceutical products.

air compressor

Are there differences between single-stage and two-stage air compressors?

Yes, there are differences between single-stage and two-stage air compressors. Here’s an in-depth explanation of their distinctions:

Compression Stages:

The primary difference between single-stage and two-stage air compressors lies in the number of compression stages they have. A single-stage compressor has only one compression stage, while a two-stage compressor has two sequential compression stages.

Compression Process:

In a single-stage compressor, the entire compression process occurs in a single cylinder. The air is drawn into the cylinder, compressed in a single stroke, and then discharged. On the other hand, a two-stage compressor utilizes two cylinders or chambers. In the first stage, air is compressed to an intermediate pressure in the first cylinder. Then, the partially compressed air is sent to the second cylinder where it undergoes further compression to reach the desired final pressure.

Pressure Output:

The number of compression stages directly affects the pressure output of the air compressor. Single-stage compressors typically provide lower maximum pressure levels compared to two-stage compressors. Single-stage compressors are suitable for applications that require moderate to low air pressure, while two-stage compressors are capable of delivering higher pressures, making them suitable for demanding applications that require greater air pressure.

Efficiency:

Two-stage compressors generally offer higher efficiency compared to single-stage compressors. The two-stage compression process allows for better heat dissipation between stages, reducing the chances of overheating and improving overall efficiency. Additionally, the two-stage design allows the compressor to achieve higher compression ratios while minimizing the work done by each stage, resulting in improved energy efficiency.

Intercooling:

Intercooling is a feature specific to two-stage compressors. Intercoolers are heat exchangers placed between the first and second compression stages. They cool down the partially compressed air before it enters the second stage, reducing the temperature and improving compression efficiency. The intercooling process helps to minimize heat buildup and reduces the potential for moisture condensation within the compressor system.

Applications:

The choice between a single-stage and two-stage compressor depends on the intended application. Single-stage compressors are commonly used for light-duty applications such as powering pneumatic tools, small-scale workshops, and DIY projects. Two-stage compressors are more suitable for heavy-duty applications that require higher pressures, such as industrial manufacturing, automotive service, and large-scale construction.

It is important to consider the specific requirements of the application, including required pressure levels, duty cycle, and anticipated air demand, when selecting between a single-stage and two-stage air compressor.

In summary, the main differences between single-stage and two-stage air compressors lie in the number of compression stages, pressure output, efficiency, intercooling capability, and application suitability.

air compressor

How do oil-lubricated and oil-free air compressors differ?

Oil-lubricated and oil-free air compressors differ in terms of their lubrication systems and the presence of oil in their operation. Here are the key differences:

Oil-Lubricated Air Compressors:

1. Lubrication: Oil-lubricated air compressors use oil for lubricating the moving parts, such as pistons, cylinders, and bearings. The oil forms a protective film that reduces friction and wear, enhancing the compressor’s efficiency and lifespan.

2. Performance: Oil-lubricated compressors are known for their smooth and quiet operation. The oil lubrication helps reduce noise levels and vibration, resulting in a more comfortable working environment.

3. Maintenance: These compressors require regular oil changes and maintenance to ensure the proper functioning of the lubrication system. The oil filter may need replacement, and the oil level should be regularly checked and topped up.

4. Applications: Oil-lubricated compressors are commonly used in applications that demand high air quality and continuous operation, such as industrial settings, workshops, and manufacturing facilities.

Oil-Free Air Compressors:

1. Lubrication: Oil-free air compressors do not use oil for lubrication. Instead, they utilize alternative materials, such as specialized coatings, self-lubricating materials, or water-based lubricants, to reduce friction and wear.

2. Performance: Oil-free compressors generally have a higher airflow capacity, making them suitable for applications where a large volume of compressed air is required. However, they may produce slightly more noise and vibration compared to oil-lubricated compressors.

3. Maintenance: Oil-free compressors typically require less maintenance compared to oil-lubricated ones. They do not need regular oil changes or oil filter replacements. However, it is still important to perform routine maintenance tasks such as air filter cleaning or replacement.

4. Applications: Oil-free compressors are commonly used in applications where air quality is crucial, such as medical and dental facilities, laboratories, electronics manufacturing, and painting applications. They are also favored for portable and consumer-grade compressors.

When selecting between oil-lubricated and oil-free air compressors, consider the specific requirements of your application, including air quality, noise levels, maintenance needs, and expected usage. It’s important to follow the manufacturer’s recommendations for maintenance and lubrication to ensure the optimal performance and longevity of the air compressor.

China manufacturer High Performance Silent 132kw 10bar Oil Injected Direct Driven Screw Air Compressor   air compressor lowesChina manufacturer High Performance Silent 132kw 10bar Oil Injected Direct Driven Screw Air Compressor   air compressor lowes
editor by CX 2023-10-24

China Best Sales Industrial Compressor De Ar Silent Hot-Selling 8-13bar 7.5-11kw for Laser Cutting Screw Air Compressor air compressor repair near me

Product Description

 

FAQ

Q1: Warranty terms of your machine?
A1: One year warranty for the machine and technical support according to your needs.

Q2: Will you provide some spare parts of the machines?
A2: Yes, of course.

Q3: What about product package?
A3: We pack our products strictly with standard seaworthy case.

Q4: Can you use our brand?
A4: Yes, OEM is available.

Q5: How long will you take to arrange production?
A5: 380V 50HZ we can delivery the goods within 3-15 days. Other voltage or other color we will delivery within 25-30 days.

Q6: How Many Staff Are There In your Factory?
A6: About 100.

Q7: What’s your factory’s production capacity?
A7: About 2000 units per month.


 

After-sales Service: Spare Parts
Warranty: 1 Year
Lubrication Style: Lubricated
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

How does variable speed drive technology improve air compressor efficiency?

Variable Speed Drive (VSD) technology improves air compressor efficiency by allowing the compressor to adjust its motor speed to match the compressed air demand. This technology offers several benefits that contribute to energy savings and enhanced overall system efficiency. Here’s how VSD technology improves air compressor efficiency:

1. Matching Air Demand:

Air compressors equipped with VSD technology can vary the motor speed to precisely match the required compressed air output. Traditional fixed-speed compressors operate at a constant speed regardless of the actual demand, leading to energy wastage during periods of lower air demand. VSD compressors, on the other hand, ramp up or down the motor speed to deliver the necessary amount of compressed air, ensuring optimal energy utilization.

2. Reduced Unloaded Running Time:

Fixed-speed compressors often run unloaded during periods of low demand, where they continue to consume energy without producing compressed air. VSD technology eliminates or significantly reduces this unloaded running time by adjusting the motor speed to closely follow the air demand. As a result, VSD compressors minimize energy wastage during idle periods, leading to improved efficiency.

3. Soft Starting:

Traditional fixed-speed compressors experience high inrush currents during startup, which can strain the electrical system and cause voltage dips. VSD compressors utilize soft starting capabilities, gradually ramping up the motor speed instead of instantly reaching full speed. This soft starting feature reduces mechanical and electrical stress, ensuring a smooth and controlled startup, and minimizing energy spikes.

4. Energy Savings at Partial Load:

In many applications, compressed air demand varies throughout the day or during different production cycles. VSD compressors excel in such scenarios by operating at lower speeds during periods of lower demand. Since power consumption is proportional to motor speed, running the compressor at reduced speeds significantly reduces energy consumption compared to fixed-speed compressors that operate at a constant speed regardless of the demand.

5. Elimination of On/Off Cycling:

Fixed-speed compressors often use on/off cycling to adjust the compressed air output. This cycling can result in frequent starts and stops, which consume more energy and cause mechanical wear. VSD compressors eliminate the need for on/off cycling by continuously adjusting the motor speed to meet the demand. By operating at a consistent speed within the required range, VSD compressors minimize energy losses associated with frequent cycling.

6. Enhanced System Control:

VSD compressors offer advanced control capabilities, allowing for precise monitoring and adjustment of the compressed air system. These systems can integrate with sensors and control algorithms to maintain optimal system pressure, minimize pressure fluctuations, and prevent excessive energy consumption. The ability to fine-tune the compressor’s output based on real-time demand contributes to improved overall system efficiency.

By utilizing variable speed drive technology, air compressors can achieve significant energy savings, reduce operational costs, and enhance their environmental sustainability by minimizing energy wastage and optimizing efficiency.

air compressor

How does the horsepower of an air compressor affect its capabilities?

The horsepower of an air compressor is a crucial factor that directly impacts its capabilities and performance. Here’s a closer look at how the horsepower rating affects an air compressor:

Power Output:

The horsepower rating of an air compressor indicates its power output or the rate at which it can perform work. Generally, a higher horsepower rating translates to a greater power output, allowing the air compressor to deliver more compressed air per unit of time. This increased power output enables the compressor to operate pneumatic tools and equipment that require higher air pressure or greater airflow.

Air Pressure:

The horsepower of an air compressor is directly related to the air pressure it can generate. Air compressors with higher horsepower ratings have the capacity to produce higher air pressures. This is particularly important when operating tools or machinery that require specific air pressure levels to function optimally. For example, heavy-duty pneumatic tools like jackhammers or impact wrenches may require higher air pressure to deliver the necessary force.

Air Volume:

In addition to air pressure, the horsepower of an air compressor also affects the air volume or airflow it can provide. Higher horsepower compressors can deliver greater volumes of compressed air, measured in cubic feet per minute (CFM). This increased airflow is beneficial when using pneumatic tools that require a continuous supply of compressed air, such as paint sprayers or sandblasters.

Duty Cycle:

The horsepower rating of an air compressor can also influence its duty cycle. The duty cycle refers to the amount of time an air compressor can operate continuously before it needs to rest and cool down. Higher horsepower compressors often have larger and more robust components, allowing them to handle heavier workloads and operate for longer periods without overheating. This is particularly important in demanding applications where continuous and uninterrupted operation is required.

Size and Portability:

It’s worth noting that the horsepower rating can also affect the physical size and portability of an air compressor. Higher horsepower compressors tend to be larger and heavier due to the need for more substantial motors and components to generate the increased power output. This can impact the ease of transportation and maneuverability, especially in portable or mobile applications.

When selecting an air compressor, it is essential to consider the specific requirements of your intended applications. Factors such as desired air pressure, airflow, duty cycle, and portability should be taken into account. It’s important to choose an air compressor with a horsepower rating that aligns with the demands of the tools and equipment you plan to operate, ensuring optimal performance and efficiency.

Consulting the manufacturer’s specifications and guidelines can provide valuable information on how the horsepower rating of an air compressor corresponds to its capabilities and suitability for different tasks.

air compressor

What are the different types of air compressors?

There are several different types of air compressors, each with its own unique design and operating principle. Here’s an overview of the most commonly used types:

1. Reciprocating Air Compressors: Reciprocating air compressors, also known as piston compressors, use one or more pistons driven by a crankshaft to compress air. They operate by drawing air into a cylinder, compressing it with the piston’s up-and-down motion, and discharging the compressed air into a storage tank. Reciprocating compressors are known for their high pressure capabilities and are commonly used in industrial applications.

2. Rotary Screw Air Compressors: Rotary screw air compressors utilize two interlocking screws to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads. These compressors are known for their continuous duty cycle, high efficiency, and quiet operation. They are widely used in industrial, commercial, and automotive applications.

3. Centrifugal Air Compressors: Centrifugal air compressors rely on the principle of centrifugal force to compress air. They use a high-speed impeller to accelerate the incoming air and then convert the kinetic energy into pressure energy. Centrifugal compressors are commonly used in large-scale industrial applications that require high volumes of compressed air.

4. Rotary Vane Air Compressors: Rotary vane air compressors employ a rotor with sliding vanes that compress the air. As the rotor rotates, the vanes slide in and out of the rotor, creating compression chambers. Air is drawn in, trapped, and compressed as the vanes move. These compressors are compact, reliable, and suitable for small to medium-sized applications.

5. Axial Flow Air Compressors: Axial flow air compressors are primarily used in specialized applications such as aircraft engines and gas turbines. They utilize a series of rotating and stationary blades to compress air in a continuous flow. Axial flow compressors are known for their high flow rates and are designed for applications that require large volumes of compressed air.

6. Scroll Air Compressors: Scroll air compressors consist of two interlocking spirals or scrolls that compress the air. One spiral remains stationary while the other orbits around it, creating a series of expanding and contracting pockets that compress the air. Scroll compressors are compact, reliable, and commonly used in applications where low noise and oil-free air are required, such as medical and dental equipment.

These are just a few examples of the different types of air compressors available. Each type has its own advantages, capabilities, and ideal applications. The choice of air compressor depends on factors such as required pressure, flow rate, duty cycle, noise level, oil-free operation, and specific application requirements.

China Best Sales Industrial Compressor De Ar Silent Hot-Selling 8-13bar 7.5-11kw for Laser Cutting Screw Air Compressor   air compressor repair near meChina Best Sales Industrial Compressor De Ar Silent Hot-Selling 8-13bar 7.5-11kw for Laser Cutting Screw Air Compressor   air compressor repair near me
editor by CX 2023-10-24