Product Description
Advantages for our condensing unit
1. The accessories for the unit include liquid receiver, pressure gage, pressure controller, sight glass, filter junction box, etc.
2. The copper tube of air cooled Condensing units get through the 2.6Mpa pressure test, meet the request of normal work.
3.Every part of units is best in corrosion protection.
4. Air cooled condensing unit refrigerating capacity ranks from 0.2KW to 29KW. evaporating temperature:-45ºC-+15°C, run steady under the ambient temperature +43ºC.
5. Proper structure, accurate and reliable operating system for the air cooled condensing unit. 6. Use the high efficiency and large air volume axial fan, with low noise and energy saving.
ApplicationHotels, hospitals, blood banks, poultry slaughter and processing, CHINAMFG and processing, mushroom cultivation,
agricultural product processing, dairy production, pharmaceutical processing and logistics, beverage production and processing,
beer production and cooling, large-scale logistics storage, chemical product cooling, leather manufacturing, injection molding,
machine cooling, steel cooling, ommunication equipment, ship manufacturing and more.
| Suitable Temperature for Various Products | ||||||||
| Temperature | Condensing Unit Type | Suitable Products | ||||||
| -5°C ~ +5°C | Single stage piston/scroll/ screw compressor condensing unit |
Vegetables, Fruit, Drink, Beer, Medicines, Vaccine… |
||||||
| -15°C ~ -25°C | Single stage piston/scroll/ screw compressor condensing unit |
Meat, Fish, Medicines, Seafoods, Ice Cream… |
||||||
| -30°C ~ -40°C | 2-stage piston/screw compressor condensing unit |
Meat, Fish, Blood… | ||||||
| -45°C ~ -70°C | Cascade condensing unit | Tuna, Vaccine… | ||||||
Product Specifications
| 1 | Product name | Stainless Steel Brazed Plate Heat Exchanger | |||
| 2 | Refrigerant | R22,R407etc. | |||
| 3 | Voltage | AC220v/380v/customized ,50Hz/60Hz | |||
| 4 | cold room temperature | -25~45ºC | |||
| 5 | Range of evaporating temperature | -30~50ºC | |||
| 6 | Warranty | 1 Year | |||
| 7 | Composition | Compressor, crankcase heater, oil pressure safety switch, air-cooled condenser, receiving tank, drier-filter, meter panel, pressure controller, refrigeration oil, protection gas, double stage compressor with intermediate cooler |
|||
1. Why do we insist original new compressor?
Only original brand new compressor can have the best quality & high efficiency. So you save money on electric bill and maintenance cost.
2. Why same HP compressors have big price difference?
Even same horse power compressor condensing unit, the compressor have different designs, so the cooling capacities are different. Also their condensers are different. So cooling capacity bigger, price higher.
3. Can refrigeration units be customized?
Yes. We have experienced technicians and professional team can help customization. But we have many models for you to choose, better choose them because the delivery time is much shorter.
4. How many kinds of compressors?
Semi-hermetic(ECOLINE series),Two stages semi-hermetic, Semi-hermetic screw compressor, Hermetic screw compressor.
| After-sales Service: | 1 Year |
|---|---|
| Warranty: | 3-5 Year |
| Principle: | Mixed-Flow Compressor |
| Samples: |
US$ 200/Piece
1 Piece(Min.Order) | Order Sample |
|---|
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
| Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
How does variable speed drive technology improve air compressor efficiency?
Variable Speed Drive (VSD) technology improves air compressor efficiency by allowing the compressor to adjust its motor speed to match the compressed air demand. This technology offers several benefits that contribute to energy savings and enhanced overall system efficiency. Here’s how VSD technology improves air compressor efficiency:
1. Matching Air Demand:
Air compressors equipped with VSD technology can vary the motor speed to precisely match the required compressed air output. Traditional fixed-speed compressors operate at a constant speed regardless of the actual demand, leading to energy wastage during periods of lower air demand. VSD compressors, on the other hand, ramp up or down the motor speed to deliver the necessary amount of compressed air, ensuring optimal energy utilization.
2. Reduced Unloaded Running Time:
Fixed-speed compressors often run unloaded during periods of low demand, where they continue to consume energy without producing compressed air. VSD technology eliminates or significantly reduces this unloaded running time by adjusting the motor speed to closely follow the air demand. As a result, VSD compressors minimize energy wastage during idle periods, leading to improved efficiency.
3. Soft Starting:
Traditional fixed-speed compressors experience high inrush currents during startup, which can strain the electrical system and cause voltage dips. VSD compressors utilize soft starting capabilities, gradually ramping up the motor speed instead of instantly reaching full speed. This soft starting feature reduces mechanical and electrical stress, ensuring a smooth and controlled startup, and minimizing energy spikes.
4. Energy Savings at Partial Load:
In many applications, compressed air demand varies throughout the day or during different production cycles. VSD compressors excel in such scenarios by operating at lower speeds during periods of lower demand. Since power consumption is proportional to motor speed, running the compressor at reduced speeds significantly reduces energy consumption compared to fixed-speed compressors that operate at a constant speed regardless of the demand.
5. Elimination of On/Off Cycling:
Fixed-speed compressors often use on/off cycling to adjust the compressed air output. This cycling can result in frequent starts and stops, which consume more energy and cause mechanical wear. VSD compressors eliminate the need for on/off cycling by continuously adjusting the motor speed to meet the demand. By operating at a consistent speed within the required range, VSD compressors minimize energy losses associated with frequent cycling.
6. Enhanced System Control:
VSD compressors offer advanced control capabilities, allowing for precise monitoring and adjustment of the compressed air system. These systems can integrate with sensors and control algorithms to maintain optimal system pressure, minimize pressure fluctuations, and prevent excessive energy consumption. The ability to fine-tune the compressor’s output based on real-time demand contributes to improved overall system efficiency.
By utilizing variable speed drive technology, air compressors can achieve significant energy savings, reduce operational costs, and enhance their environmental sustainability by minimizing energy wastage and optimizing efficiency.
.webp)
How do you maintain proper air quality in compressed air systems?
Maintaining proper air quality in compressed air systems is essential to ensure the reliability and performance of pneumatic equipment and the safety of downstream processes. Here are some key steps to maintain air quality:
1. Air Filtration:
Install appropriate air filters in the compressed air system to remove contaminants such as dust, dirt, oil, and water. Filters are typically placed at various points in the system, including the compressor intake, aftercoolers, and before point-of-use applications. Regularly inspect and replace filters to ensure their effectiveness.
2. Moisture Control:
Excessive moisture in compressed air can cause corrosion, equipment malfunction, and compromised product quality. Use moisture separators or dryers to remove moisture from the compressed air. Refrigerated dryers, desiccant dryers, or membrane dryers are commonly employed to achieve the desired level of dryness.
3. Oil Removal:
If the compressed air system utilizes oil-lubricated compressors, it is essential to incorporate proper oil removal mechanisms. This can include coalescing filters or adsorption filters to remove oil aerosols and vapors from the air. Oil-free compressors eliminate the need for oil removal.
4. Regular Maintenance:
Perform routine maintenance on the compressed air system, including inspections, cleaning, and servicing of equipment. This helps identify and address any potential issues that may affect air quality, such as leaks, clogged filters, or malfunctioning dryers.
5. Air Receiver Tank Maintenance:
Regularly drain and clean the air receiver tank to remove accumulated contaminants, including water and debris. Proper maintenance of the tank helps prevent contamination from being introduced into the compressed air system.
6. Air Quality Testing:
Periodically test the quality of the compressed air using appropriate instruments and methods. This can include measuring particle concentration, oil content, dew point, and microbial contamination. Air quality testing provides valuable information about the effectiveness of the filtration and drying processes and helps ensure compliance with industry standards.
7. Education and Training:
Educate personnel working with compressed air systems about the importance of air quality and the proper procedures for maintaining it. Provide training on the use and maintenance of filtration and drying equipment, as well as awareness of potential contaminants and their impact on downstream processes.
8. Documentation and Record-Keeping:
Maintain accurate records of maintenance activities, including filter replacements, drying system performance, and air quality test results. Documentation helps track the system’s performance over time and provides a reference for troubleshooting or compliance purposes.
By implementing these practices, compressed air systems can maintain proper air quality, minimize equipment damage, and ensure the integrity of processes that rely on compressed air.
.webp)
Are there air compressors specifically designed for high-pressure applications?
Yes, there are air compressors specifically designed for high-pressure applications. These compressors are engineered to generate and deliver compressed air at significantly higher pressures than standard air compressors. Here are some key points about high-pressure air compressors:
1. Pressure Range: High-pressure air compressors are capable of producing compressed air at pressures typically ranging from 1000 to 5000 psi (pounds per square inch) or even higher. This is considerably higher than the typical range of 100 to 175 psi for standard air compressors.
2. Construction: High-pressure aircompressors feature robust construction and specialized components to withstand the higher pressures involved. They are designed with reinforced cylinders, pistons, valves, and seals that can handle the increased stress and prevent leaks or failures under high-pressure conditions.
3. Power: Generating high-pressure compressed air requires more power than standard compressors. High-pressure air compressors often have larger motors or engines to provide the necessary power to achieve the desired pressure levels.
4. Applications: High-pressure air compressors are utilized in various industries and applications where compressed air at elevated pressures is required. Some common applications include:
- Industrial manufacturing processes that involve high-pressure air for operations such as air tools, pneumatic machinery, and equipment.
- Gas and oil exploration and production, where high-pressure air is used for well drilling, well stimulation, and enhanced oil recovery techniques.
- Scuba diving and underwater operations, where high-pressure air is used for breathing apparatus and underwater tools.
- Aerospace and aviation industries, where high-pressure air is used for aircraft systems, testing, and pressurization.
- Fire services and firefighting, where high-pressure air compressors are used to fill breathing air tanks for firefighters.
5. Safety Considerations: Working with high-pressure air requires adherence to strict safety protocols. Proper training, equipment, and maintenance are crucial to ensure the safe operation of high-pressure air compressors. It is important to follow manufacturer guidelines and industry standards for high-pressure applications.
When selecting a high-pressure air compressor, consider factors such as the desired pressure range, required flow rate, power source availability, and the specific application requirements. Consult with experts or manufacturers specializing in high-pressure compressed air systems to identify the most suitable compressor for your needs.
High-pressure air compressors offer the capability to meet the demands of specialized applications that require compressed air at elevated pressures. Their robust design and ability to deliver high-pressure air make them essential tools in various industries and sectors.


editor by CX 2023-10-23
China Good quality 5.5kw 7.5HP Belt Driven 8 Bar Air Cooling Screw Air Compressor with Good quality
Product Description
Product Description
5.5KW 7.5HP Belt driven 8 bar Air cooling Screw Air compressor
Advantage: Large capacity, sufficient working pressure, high performance, low investment, easy maintenance.
Specification for 3 stage high pressure air compressor:
Packaging & Shipping
Our Services
Our Services
- 24 hours a day, 7 days a week
- 1-stop purchasing
- Cheap, fast and efficient
- adequate stocks
- 12 years experiences
- Seriously quality control
- Superb technique
We accept your specific order and do everything we can to meet your requirement.
Company Information
We are factory, export of the whole air compressor from 7.5w to 250 kw, also we are professional in Air compressor parts, such as ( pressure sensor,temperature sensor, oil level indicator, thermostat valve, air intake valve, minimum pressure valve, gear wheel, controller board, cooler, rubber parts, filter and separator, solenoid valve, lubricated oil and so on ).
We hope to enter into long business relations with you in future, many thanks!
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Vertical |
| Structure Type: | Closed Type |
| Installation Type: | Stationary Type |
| Customization: |
Available
|
|
|---|
.webp)
What is the role of air compressors in power generation?
Air compressors play a significant role in power generation, supporting various operations and equipment within the industry. Here are some key roles of air compressors in power generation:
1. Combustion Air Supply:
Air compressors are used to supply compressed air for the combustion process in power generation. In fossil fuel power plants, such as coal-fired or natural gas power plants, compressed air is required to deliver a steady flow of air to the burners. The compressed air helps in the efficient combustion of fuel, enhancing the overall performance and energy output of the power plant.
2. Instrumentation and Control:
Air compressors are utilized for instrumentation and control systems in power generation facilities. Compressed air is used to operate pneumatic control valves, actuators, and other pneumatic devices that regulate the flow of steam, water, and gases within the power plant. The reliable and precise control provided by compressed air ensures efficient and safe operation of various processes and equipment.
3. Cooling and Ventilation:
In power generation, air compressors are involved in cooling and ventilation applications. Compressed air is used to drive air-operated cooling fans and blowers, providing adequate airflow for cooling critical components such as generators, transformers, and power electronics. The compressed air also assists in maintaining proper ventilation in control rooms, substations, and other enclosed spaces, helping to dissipate heat and ensure a comfortable working environment.
4. Cleaning and Maintenance:
Air compressors are employed for cleaning and maintenance tasks in power generation facilities. Compressed air is utilized to blow away dust, dirt, and debris from equipment, machinery, and electrical panels. It helps in maintaining the cleanliness and optimal performance of various components, reducing the risk of equipment failure and improving overall reliability.
5. Pneumatic Tools and Equipment:
In power generation plants, air compressors provide the necessary compressed air for operating pneumatic tools and equipment. These tools include impact wrenches, pneumatic drills, grinders, and sandblasting equipment, which are utilized for installation, maintenance, and repair tasks. The high-pressure air generated by compressors enables efficient and reliable operation of these tools, enhancing productivity and reducing manual effort.
6. Nitrogen Generation:
Sometimes, air compressors are used in power generation for nitrogen generation. Compressed air is passed through a nitrogen generator system, which separates nitrogen from other components of air, producing a high-purity nitrogen gas stream. Nitrogen is commonly used in power plant applications, such as purging systems, blanketing in transformers, and generator cooling, due to its inert properties and low moisture content.
7. Start-up and Emergency Systems:
Air compressors are an integral part of start-up and emergency systems in power generation. Compressed air is utilized to power pneumatic starters for gas turbines, providing the initial rotation needed to start the turbine. In emergency situations, compressed air is also used to actuate emergency shutdown valves, safety systems, and fire suppression equipment, ensuring the safe operation and protection of the power plant.
Overall, air compressors contribute to the efficient and reliable operation of power generation facilities, supporting combustion processes, control systems, cooling, cleaning, and various other applications critical to the power generation industry.
.webp)
How do you troubleshoot common air compressor problems?
Troubleshooting common air compressor problems can help identify and resolve issues that may affect the performance and functionality of the compressor. Here are some steps to troubleshoot common air compressor problems:
1. No Power:
- Check the power source and ensure the compressor is properly plugged in.
- Inspect the circuit breaker or fuse box to ensure it hasn’t tripped or blown.
- Verify that the compressor’s power switch or control panel is turned on.
2. Low Air Pressure:
- Check the air pressure gauge on the compressor. If the pressure is below the desired level, the compressor might not be building up enough pressure.
- Inspect for air leaks in the system. Leaks can cause a drop in pressure. Listen for hissing sounds or use a soapy water solution to identify the location of leaks.
- Ensure the compressor’s intake filter is clean and not clogged, as this can restrict airflow and reduce pressure.
3. Excessive Noise or Vibration:
- Inspect the compressor’s mounting and foundation to ensure it is secure and stable. Loose mounts can cause excessive noise and vibration.
- Check for loose or damaged components, such as belts, pulleys, or motor mounts. Tighten or replace as necessary.
- Verify that the compressor’s cooling system, such as the fan or fins, is clean and free from obstructions. Overheating can lead to increased noise and vibration.
4. Air Leaks:
- Inspect all connections, valves, fittings, and hoses for leaks. Tighten or replace any loose or damaged components.
- Apply a soapy water solution to suspected areas and look for bubbles. Bubbles indicate air leaks.
- Consider using thread sealant or Teflon tape on threaded connections to ensure a proper seal.
5. Excessive Moisture in Compressed Air:
- Check the compressor’s drain valve and ensure it is functioning properly. Open the valve to release any accumulated moisture.
- Inspect and clean the compressor’s moisture separator or air dryer, if equipped.
- Consider installing additional filtration or drying equipment to remove moisture from the compressed air system.
6. Motor Overheating:
- Ensure the compressor’s cooling system is clean and unobstructed.
- Check the motor’s air intake vents and clean any dust or debris that may be blocking airflow.
- Verify that the compressor is not being operated in an excessively hot environment.
- Check the motor’s lubrication levels and ensure they are within the manufacturer’s recommended range.
- Consider using a thermal overload protector to prevent the motor from overheating.
If troubleshooting these common problems does not resolve the issue, it may be necessary to consult the manufacturer’s manual or seek assistance from a qualified technician. Regular maintenance, such as cleaning, lubrication, and inspection, can also help prevent common problems and ensure the optimal performance of the air compressor.
.webp)
How does an air compressor work?
An air compressor works by using mechanical energy to compress and pressurize air, which is then stored and used for various applications. Here’s a detailed explanation of how an air compressor operates:
1. Air Intake: The air compressor draws in ambient air through an intake valve or filter. The air may pass through a series of filters to remove contaminants such as dust, dirt, and moisture, ensuring the compressed air is clean and suitable for its intended use.
2. Compression: The intake air enters a compression chamber, typically consisting of one or more pistons or a rotating screw mechanism. As the piston moves or the screw rotates, the volume of the compression chamber decreases, causing the air to be compressed. This compression process increases the pressure and reduces the volume of the air.
3. Pressure Build-Up: The compressed air is discharged into a storage tank or receiver where it is held at a high pressure. The tank allows the compressed air to be stored for later use and helps to maintain a consistent supply of compressed air, even during periods of high demand.
4. Pressure Regulation: Air compressors often have a pressure regulator that controls the output pressure of the compressed air. This allows the user to adjust the pressure according to the requirements of the specific application. The pressure regulator ensures that the compressed air is delivered at the desired pressure level.
5. Release and Use: When compressed air is needed, it is released from the storage tank or receiver through an outlet valve or connection. The compressed air can then be directed to the desired application, such as pneumatic tools, air-operated machinery, or other pneumatic systems.
6. Continued Operation: The air compressor continues to operate as long as there is a demand for compressed air. When the pressure in the storage tank drops below a certain level, the compressor automatically starts again to replenish the compressed air supply.
Additionally, air compressors may include various components such as pressure gauges, safety valves, lubrication systems, and cooling mechanisms to ensure efficient and reliable operation.
In summary, an air compressor works by drawing in air, compressing it to increase its pressure, storing the compressed air, regulating the output pressure, and releasing it for use in various applications. This process allows for the generation of a continuous supply of compressed air for a wide range of industrial, commercial, and personal uses.


editor by CX 2023-10-21
China high quality High Pressure110kw 150HP VSD VFD Screw Air Compressor with Best Sales
Product Description
new design 90kw 125hp vfd variable speed screw compressor
*Product Description
| Model | LGPM-10HP | LGPM-15HP | LGPM-20HP | LGPM-30HP | LGPM-50HP | LGPM-60HP |
| Motor Power(KW) | 7.5 | 11 | 15 | 22 | 37 | 45 |
| Capacity/Pressure (m3/min/MPa) |
1.2/0.7 | 1.71/0.7 | 2.3/0.7 | 3.8/0.7 | 6.4/0.7 | 8.5/0.7 |
| 1.1/0.8 | 1.65/0.8 | 2.25/0.8 | 3.6/0.8 | 6.2/0.8 | 8.0/0.8 | |
| 0.9/1.0 | 1.32/1.0 | 1.8/1.0 | 3.0/1.0 | 5.6/1.0 | 7.5/1.0 | |
| 0.8/1.2 | 1.1/1.2 | 1.6/1.2 | 2.6/1.2 | 5.0/1.2 | 7.0/1.2 | |
| LubricLGPMing oil(L) | 12 | 16 | 16 | 22 | 26 | 26 |
| Noise db(A) | 60-70±2 | 60-70±2 | 60-70±2 | 60-70±2 | 60-70±2 | 60-70±2 |
| Length(mm) | 780 | 1050 | 1050 | 1300 | 1470 | 1460 |
| Width(mm) | 600 | 700 | 700 | 850 | 1000 | 1000 |
| Height(mm) | 1571 | 1150 | 1150 | 1100 | 1380 | 1380 |
| Weight(Kg) | 215 | 335 | 335 | 465 | 630 | 825 |
| Model | LGPM-75HP | LGPM-100HP | LGPM-125HP | LGPM-150HP | LGPM-175HP | LGPM-200HP |
| Motor Power(KW) | 55 | 75 | 90 | 110 | 132 | 160 |
| Capacity/Pressure (m3/min/MPa) |
10.5/0.7 | 13.2/0.7 | 16.2/0.7 | 21.0/0.7 | 24.6/0.7 | 31.0/0.7 |
| 10.0/0.8 | 13.0/0.8 | 15.8/0.8 | 20.0/0.8 | 23.0/0.8 | 30.0/0.8 | |
| 8.5/1.0 | 10.9/1.0 | 14.0/1.0 | 18.0/1.0 | 21.0/1.0 | 26.0/1.0 | |
| 7.6/1.2 | 9.8/1.2 | 12.8/1.2 | 16.0/1.2 | 18.8/1.2 | 22.0/1.2 | |
| LubricLGPMing oil(L) | 54 | 54 | 72 | 90 | 90 | 90 |
| Noise db(A) | 70-76±2 | 70-76±2 | 70-76±2 | 70-76±2 | 70-76±2 | 70-76±2 |
| Length(mm) | 1900 | 1900 | 1900 | 2571 | 2571 | 2360 |
| Width(mm) | 1250 | 1250 | 1250 | 1590 | 1590 | 1610 |
| Height(mm) | 1600 | 1600 | 1600 | 1810 | 1810 | 1860 |
| Weight(Kg) | 1130 | 1230 | 1325 | 1520 | 1710 | 1850 |
*Certifications
*Company Information
ZheJiang Compressor Import & Export Co.,Ltd is located in the logistics capital of China, 1 of the important birthplaces of Chinese civilization-HangZhou, ZheJiang Province. With professinal manufacturing experience and first -class comprehensive scientific and technological strength of the talent team, as the energy-saving compressor system leader and renowed in the industry.
We specializes in R & D and sales of power frequency ,permanent magnet frequency conversion ,two -stage compressor permanent magnet frequency conversion ,low -voltage and mobile screw air compressor . With a deep industry background , 1 step ahead ambition . With the professional enthusiasm for screw air compressor , team innovation , to meat the challenges of enterprise’s own determination and the rigorous attitude of excellence,products are strictly in accordance with IOS 9001 international quality procedures,to provide customers with energy -saving and reliable products .
We warmly welcomes people from all around the world to visit the company to guide the establishment of a wide range of business contacts and cooperation . Choosing HangZhou Atlas Air compressor Manufacturing Co.,Led.is to choose quality and service ,choose culture and taste ,choose a permanent and trustworthy partner !
*Packaging & Shipping
*Contact us
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Angular |
| Structure Type: | Closed Type |
| Installation Type: | Stationary Type |
| Customization: |
Available
|
|
|---|
.webp)
What are the energy-saving technologies available for air compressors?
There are several energy-saving technologies available for air compressors that help improve their efficiency and reduce energy consumption. These technologies aim to optimize the operation of air compressors and minimize energy losses. Here are some common energy-saving technologies used:
1. Variable Speed Drive (VSD) Compressors:
VSD compressors are designed to adjust the motor speed according to the compressed air demand. By varying the motor speed, these compressors can match the output to the actual air requirement, resulting in energy savings. VSD compressors are particularly effective in applications with varying air demands, as they can operate at lower speeds during periods of lower demand, reducing energy consumption.
2. Energy-Efficient Motors:
The use of energy-efficient motors in air compressors can contribute to energy savings. High-efficiency motors, such as those with premium efficiency ratings, are designed to minimize energy losses and operate more efficiently than standard motors. By using energy-efficient motors, air compressors can reduce energy consumption and achieve higher overall system efficiency.
3. Heat Recovery Systems:
Air compressors generate a significant amount of heat during operation. Heat recovery systems capture and utilize this wasted heat for other purposes, such as space heating, water heating, or preheating process air or water. By recovering and utilizing the heat, air compressors can provide additional energy savings and improve overall system efficiency.
4. Air Receiver Tanks:
Air receiver tanks are used to store compressed air and provide a buffer during periods of fluctuating demand. By using appropriately sized air receiver tanks, the compressed air system can operate more efficiently. The tanks help reduce the number of starts and stops of the air compressor, allowing it to run at full load for longer periods, which is more energy-efficient than frequent cycling.
5. System Control and Automation:
Implementing advanced control and automation systems can optimize the operation of air compressors. These systems monitor and adjust the compressed air system based on demand, ensuring that only the required amount of air is produced. By maintaining optimal system pressure, minimizing leaks, and reducing unnecessary air production, control and automation systems help achieve energy savings.
6. Leak Detection and Repair:
Air leaks in compressed air systems can lead to significant energy losses. Regular leak detection and repair programs help identify and fix air leaks promptly. By minimizing air leakage, the demand on the air compressor is reduced, resulting in energy savings. Utilizing ultrasonic leak detection devices can help locate and repair leaks more efficiently.
7. System Optimization and Maintenance:
Proper system optimization and routine maintenance are essential for energy savings in air compressors. This includes regular cleaning and replacement of air filters, optimizing air pressure settings, ensuring proper lubrication, and conducting preventive maintenance to keep the system running at peak efficiency.
By implementing these energy-saving technologies and practices, air compressor systems can achieve significant energy efficiency improvements, reduce operational costs, and minimize environmental impact.
.webp)
How do you maintain proper air quality in compressed air systems?
Maintaining proper air quality in compressed air systems is essential to ensure the reliability and performance of pneumatic equipment and the safety of downstream processes. Here are some key steps to maintain air quality:
1. Air Filtration:
Install appropriate air filters in the compressed air system to remove contaminants such as dust, dirt, oil, and water. Filters are typically placed at various points in the system, including the compressor intake, aftercoolers, and before point-of-use applications. Regularly inspect and replace filters to ensure their effectiveness.
2. Moisture Control:
Excessive moisture in compressed air can cause corrosion, equipment malfunction, and compromised product quality. Use moisture separators or dryers to remove moisture from the compressed air. Refrigerated dryers, desiccant dryers, or membrane dryers are commonly employed to achieve the desired level of dryness.
3. Oil Removal:
If the compressed air system utilizes oil-lubricated compressors, it is essential to incorporate proper oil removal mechanisms. This can include coalescing filters or adsorption filters to remove oil aerosols and vapors from the air. Oil-free compressors eliminate the need for oil removal.
4. Regular Maintenance:
Perform routine maintenance on the compressed air system, including inspections, cleaning, and servicing of equipment. This helps identify and address any potential issues that may affect air quality, such as leaks, clogged filters, or malfunctioning dryers.
5. Air Receiver Tank Maintenance:
Regularly drain and clean the air receiver tank to remove accumulated contaminants, including water and debris. Proper maintenance of the tank helps prevent contamination from being introduced into the compressed air system.
6. Air Quality Testing:
Periodically test the quality of the compressed air using appropriate instruments and methods. This can include measuring particle concentration, oil content, dew point, and microbial contamination. Air quality testing provides valuable information about the effectiveness of the filtration and drying processes and helps ensure compliance with industry standards.
7. Education and Training:
Educate personnel working with compressed air systems about the importance of air quality and the proper procedures for maintaining it. Provide training on the use and maintenance of filtration and drying equipment, as well as awareness of potential contaminants and their impact on downstream processes.
8. Documentation and Record-Keeping:
Maintain accurate records of maintenance activities, including filter replacements, drying system performance, and air quality test results. Documentation helps track the system’s performance over time and provides a reference for troubleshooting or compliance purposes.
By implementing these practices, compressed air systems can maintain proper air quality, minimize equipment damage, and ensure the integrity of processes that rely on compressed air.
.webp)
How do oil-lubricated and oil-free air compressors differ?
Oil-lubricated and oil-free air compressors differ in terms of their lubrication systems and the presence of oil in their operation. Here are the key differences:
Oil-Lubricated Air Compressors:
1. Lubrication: Oil-lubricated air compressors use oil for lubricating the moving parts, such as pistons, cylinders, and bearings. The oil forms a protective film that reduces friction and wear, enhancing the compressor’s efficiency and lifespan.
2. Performance: Oil-lubricated compressors are known for their smooth and quiet operation. The oil lubrication helps reduce noise levels and vibration, resulting in a more comfortable working environment.
3. Maintenance: These compressors require regular oil changes and maintenance to ensure the proper functioning of the lubrication system. The oil filter may need replacement, and the oil level should be regularly checked and topped up.
4. Applications: Oil-lubricated compressors are commonly used in applications that demand high air quality and continuous operation, such as industrial settings, workshops, and manufacturing facilities.
Oil-Free Air Compressors:
1. Lubrication: Oil-free air compressors do not use oil for lubrication. Instead, they utilize alternative materials, such as specialized coatings, self-lubricating materials, or water-based lubricants, to reduce friction and wear.
2. Performance: Oil-free compressors generally have a higher airflow capacity, making them suitable for applications where a large volume of compressed air is required. However, they may produce slightly more noise and vibration compared to oil-lubricated compressors.
3. Maintenance: Oil-free compressors typically require less maintenance compared to oil-lubricated ones. They do not need regular oil changes or oil filter replacements. However, it is still important to perform routine maintenance tasks such as air filter cleaning or replacement.
4. Applications: Oil-free compressors are commonly used in applications where air quality is crucial, such as medical and dental facilities, laboratories, electronics manufacturing, and painting applications. They are also favored for portable and consumer-grade compressors.
When selecting between oil-lubricated and oil-free air compressors, consider the specific requirements of your application, including air quality, noise levels, maintenance needs, and expected usage. It’s important to follow the manufacturer’s recommendations for maintenance and lubrication to ensure the optimal performance and longevity of the air compressor.


editor by CX 2023-10-21
China supplier China CHINAMFG Factory Price Intelligent PLC Control High Quality Professional Electric Motor Powered Direct Screw Air Compressor with ISO and CE Certification arb air compressor
Product Description
BEEST—-AIR COMPRESSOR&SOLUTION
Moair Energy Conservation Durable Two Stage Screw Air Compressor with Double Permanent Magnet Motor
1. Company background
ZheJiang CHINAMFG International Trade Co., Ltd. is the senior partner of HangZhou CHINAMFG Compressor Co., Ltd , we are committed to the sales and after-sales service of air compressors in Southeast Asia, and have stores in Indonesia.
We are the professional manufacturer of the air compressor products of various types including the permanent-magnet synchronous variable-frequency series,permanent-magnet synchronous low-pressure series,permanent-magnet sunchronous two-stage compressors series,etc.
More than 10 years of professional screw compressors manufacturing technology,bringing the international first-class permanent magnet synchronous drive and control technologies.
2. Product introduction
Equipped with an IE3 motor, the direct drive rotary screw air compressor consists of a high-accuracy screw and high-quality casting, with a wide variable range of parameters.
3.Core components
Motor
- More stable: no mechanical transmission troubles
There is no gear shaft in the air compressor and the effective permanent magnet motor and the male rotor are directly connected on 1 shaft without gear drive, which can eliminate pitting of gear or hidden troubles of tooth fracture.
Without shaft coupling, 2 integrated PM motors directly drive 2 airends of the air compressor, avoiding the hidden troubles of shaft coupling failure. - More energy-savings: the airend is always in a smooth running state
The 2 stage 3 phase permanent magnet rotary gear screw air compressor of CHINAMFG is powered by 2 independent PM motors and 2 independent inverters, which is intelligently controlled such as keep the airend running at a best level-pressure point by controlling discharge pressure and interstage pressure under the circumstance of different rotary speed and different pressure. The best running speed of air compressor can be automatically calculated while running and then the compression ratio can be balanced by final match, which can keep the compressor in a best running state, thus obtaining the highest efficiency. - More effective: high-efficiency permanent magnet motor and no gear drive loss.
With a motor of a high protection degree of IP54, it is more energy-saving and it can stay effective at low frequency and low speed. - More environment-friendly operation with lower noise
No noise of motor bearings, gear meshing and coupling transmission. - More structure-compact
The volume of PM motor is small and the structure is compact, which can save much space.
4.Parameters
5.Principle of energy-saving
- Change the traditional induction motor with high-efficiency technology of permanent magnet rotary screw motor, thus reducing the consumption in transmission.
- Powered by 2 independent PM motors and 2 independent inverters, the compressor is intelligently controlled such as keep the airend running at a best level-pressure point by controlling pressure of air flow and interstage pressure under the circumstance of different rotary speed and different pressure. The best running speed of compressor can be automatically calculated while running and then the compression ratio can be balanced by final match, which can keep the compressor in a best running state, thus obtaining the highest efficiency.
- Because the gear ratio is fixed, point efficiency is emphasized in this case. That is to say, only with fixed rotary speed and rated pressure did it have the best specific power. When running in a state of variable speed and variable frequency, considering the fixed speed of gear, interstage pressure will not reach the best one. Rotational speed declining while energy consumption not declining at the same time, it is not suitable for running in variable speed and variable frequency state.
| After-sales Service: | Online Service |
|---|---|
| Warranty: | One Year |
| Lubrication Style: | Lubricated |
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Vertical |
.webp)
What is the impact of humidity on compressed air quality?
Humidity can have a significant impact on the quality of compressed air. Compressed air systems often draw in ambient air, which contains moisture in the form of water vapor. When this air is compressed, the moisture becomes concentrated, leading to potential issues in the compressed air. Here’s an overview of the impact of humidity on compressed air quality:
1. Corrosion:
High humidity in compressed air can contribute to corrosion within the compressed air system. The moisture in the air can react with metal surfaces, leading to rust and corrosion in pipes, tanks, valves, and other components. Corrosion not only weakens the structural integrity of the system but also introduces contaminants into the compressed air, compromising its quality and potentially damaging downstream equipment.
2. Contaminant Carryover:
Humidity in compressed air can cause carryover of contaminants. Water droplets formed due to condensation can carry particulates, oil, and other impurities present in the air. These contaminants can then be transported along with the compressed air, leading to fouling of filters, clogging of pipelines, and potential damage to pneumatic tools, machinery, and processes.
3. Decreased Efficiency of Pneumatic Systems:
Excessive moisture in compressed air can reduce the efficiency of pneumatic systems. Water droplets can obstruct or block the flow of air, leading to decreased performance of pneumatic tools and equipment. Moisture can also cause problems in control valves, actuators, and other pneumatic devices, affecting their responsiveness and accuracy.
4. Product Contamination:
In industries where compressed air comes into direct contact with products or processes, high humidity can result in product contamination. Moisture in compressed air can mix with sensitive products, leading to quality issues, spoilage, or even health hazards in industries such as food and beverage, pharmaceuticals, and electronics manufacturing.
5. Increased Maintenance Requirements:
Humidity in compressed air can increase the maintenance requirements of a compressed air system. Moisture can accumulate in filters, separators, and other air treatment components, necessitating frequent replacement or cleaning. Excessive moisture can also lead to the growth of bacteria, fungus, and mold within the system, requiring additional cleaning and maintenance efforts.
6. Adverse Effects on Instrumentation:
Humidity can adversely affect instrumentation and control systems that rely on compressed air. Moisture can disrupt the accuracy and reliability of pressure sensors, flow meters, and other pneumatic instruments, leading to incorrect measurements and control signals.
To mitigate the impact of humidity on compressed air quality, various air treatment equipment is employed, including air dryers, moisture separators, and filters. These devices help remove moisture from the compressed air, ensuring that the air supplied is dry and of high quality for the intended applications.
.webp)
Are there differences between single-stage and two-stage air compressors?
Yes, there are differences between single-stage and two-stage air compressors. Here’s an in-depth explanation of their distinctions:
Compression Stages:
The primary difference between single-stage and two-stage air compressors lies in the number of compression stages they have. A single-stage compressor has only one compression stage, while a two-stage compressor has two sequential compression stages.
Compression Process:
In a single-stage compressor, the entire compression process occurs in a single cylinder. The air is drawn into the cylinder, compressed in a single stroke, and then discharged. On the other hand, a two-stage compressor utilizes two cylinders or chambers. In the first stage, air is compressed to an intermediate pressure in the first cylinder. Then, the partially compressed air is sent to the second cylinder where it undergoes further compression to reach the desired final pressure.
Pressure Output:
The number of compression stages directly affects the pressure output of the air compressor. Single-stage compressors typically provide lower maximum pressure levels compared to two-stage compressors. Single-stage compressors are suitable for applications that require moderate to low air pressure, while two-stage compressors are capable of delivering higher pressures, making them suitable for demanding applications that require greater air pressure.
Efficiency:
Two-stage compressors generally offer higher efficiency compared to single-stage compressors. The two-stage compression process allows for better heat dissipation between stages, reducing the chances of overheating and improving overall efficiency. Additionally, the two-stage design allows the compressor to achieve higher compression ratios while minimizing the work done by each stage, resulting in improved energy efficiency.
Intercooling:
Intercooling is a feature specific to two-stage compressors. Intercoolers are heat exchangers placed between the first and second compression stages. They cool down the partially compressed air before it enters the second stage, reducing the temperature and improving compression efficiency. The intercooling process helps to minimize heat buildup and reduces the potential for moisture condensation within the compressor system.
Applications:
The choice between a single-stage and two-stage compressor depends on the intended application. Single-stage compressors are commonly used for light-duty applications such as powering pneumatic tools, small-scale workshops, and DIY projects. Two-stage compressors are more suitable for heavy-duty applications that require higher pressures, such as industrial manufacturing, automotive service, and large-scale construction.
It is important to consider the specific requirements of the application, including required pressure levels, duty cycle, and anticipated air demand, when selecting between a single-stage and two-stage air compressor.
In summary, the main differences between single-stage and two-stage air compressors lie in the number of compression stages, pressure output, efficiency, intercooling capability, and application suitability.
.webp)
What are the key components of an air compressor system?
An air compressor system consists of several key components that work together to generate and deliver compressed air. Here are the essential components:
1. Compressor Pump: The compressor pump is the heart of the air compressor system. It draws in ambient air and compresses it to a higher pressure. The pump can be reciprocating (piston-driven) or rotary (screw, vane, or scroll-driven) based on the compressor type.
2. Electric Motor or Engine: The electric motor or engine is responsible for driving the compressor pump. It provides the power necessary to operate the pump and compress the air. The motor or engine’s size and power rating depend on the compressor’s capacity and intended application.
3. Air Intake: The air intake is the opening or inlet through which ambient air enters the compressor system. It is equipped with filters to remove dust, debris, and contaminants from the incoming air, ensuring clean air supply and protecting the compressor components.
4. Compression Chamber: The compression chamber is where the actual compression of air takes place. In reciprocating compressors, it consists of cylinders, pistons, valves, and connecting rods. In rotary compressors, it comprises intermeshing screws, vanes, or scrolls that compress the air as they rotate.
5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air. It acts as a buffer, allowing for a steady supply of compressed air during peak demand periods and reducing pressure fluctuations. The tank also helps separate moisture from the compressed air, allowing it to condense and be drained out.
6. Pressure Relief Valve: The pressure relief valve is a safety device that protects the compressor system from over-pressurization. It automatically releases excess pressure if it exceeds a predetermined limit, preventing damage to the system and ensuring safe operation.
7. Pressure Switch: The pressure switch is an electrical component that controls the operation of the compressor motor. It monitors the pressure in the system and automatically starts or stops the motor based on pre-set pressure levels. This helps maintain the desired pressure range in the receiver tank.
8. Regulator: The regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications, ensuring a consistent and safe supply of compressed air.
9. Air Outlet and Distribution System: The air outlet is the point where the compressed air is delivered from the compressor system. It is connected to a distribution system comprising pipes, hoses, fittings, and valves that carry the compressed air to the desired application points or tools.
10. Filters, Dryers, and Lubricators: Depending on the application and air quality requirements, additional components such as filters, dryers, and lubricators may be included in the system. Filters remove contaminants, dryers remove moisture from the compressed air, and lubricators provide lubrication to pneumatic tools and equipment.
These are the key components of an air compressor system. Each component plays a crucial role in the generation, storage, and delivery of compressed air for various industrial, commercial, and personal applications.


editor by CX 2023-10-20
China Best Sales 100 CHINAMFG 7bar Energy Saving Dry Oil Free \Oilless Screw Air Compressor mini air compressor
Product Description
Industrial Silent/Mute Medical Dry Oil Free Oilless Direct Drive Rotary Double Screw Type Air Compressor Advantages
1.Clean air 100% oil-free, class 0 oil free air according to ISO8537-1
2.Adopt GHH air end made in Germany
3.Technology patent used in oil free compressed air system
4.Significant energy saving, environmental-friendly and pollution-free
5.Low operation and maintenance cost
6.Powerful MAM microcomputer controller and touch screen
7.Designed especially for medical, pharmacy, instrument, coating, chemical industry and food processing, etc.
DENAIR Dry Type Oil Free Screw Air Compressor In Hannover Messe 2017
DENAIR Class 0 Certification
Comparison between dry oil free compressor and lubricated screw air compressor
Dry Type Oil-free Air Compressor Technical Parameters
| Model | Maximum working pressure | Capacity(FAD)* | Installed motor power |
Cooling Method | Noise Level** | Dimensions (mm) |
Weight | Air Outlet Pipe Diameter | |||||||
| 50 Hz | 60 Hz | ||||||||||||||
| bar(e) | psig | m³/min | cfm | m³/min | cfm | kW | hp | dB(A) | L | W | H | kG | |||
| DWW-55 | 7 | 102 | 9.35 | 330 | 8.06 | 285 | 55 | 75 | Air Cooling W-water Cooling | 74 | 2000 | 1200 | 1650 | 1900 | G1-1/2″ |
| 8 | 116 | 9.17 | 324 | 8.04 | 284 | 55 | 75 | 74 | 2000 | 1200 | 1650 | 1900 | G1-1/2″ | ||
| 10 | 145 | 8.11 | 286 | 7.05 | 249 | 55 | 75 | 74 | 2000 | 1200 | 1650 | 1900 | G1-1/2″ | ||
| DWW-55W | 7 | 102 | 9.35 | 330 | 8.06 | 285 | 55 | 75 | 74 | 2000 | 1200 | 1650 | 1800 | G1-1/2″ | |
| 8 | 116 | 9.17 | 324 | 8.04 | 284 | 55 | 75 | 74 | 2000 | 1200 | 1650 | 1800 | G1-1/2″ | ||
| 10 | 145 | 8.11 | 286 | 7.05 | 249 | 55 | 75 | 74 | 2000 | 1200 | 1650 | 1800 | G1-1/2″ | ||
| DWW-75 | 7 | 102 | 12.71 | 449 | 11.56 | 408 | 75 | 100 | 74 | 2000 | 1200 | 1650 | 2100 | DN50 | |
| 8 | 116 | 11.78 | 416 | 11.53 | 407 | 75 | 100 | 74 | 2000 | 1200 | 1650 | 2100 | DN50 | ||
| 10 | 145 | 11.57 | 409 | 10.11 | 357 | 75 | 100 | 74 | 2000 | 1200 | 1650 | 2100 | DN50 | ||
| DWW-75W | 7 | 102 | 12.71 | 449 | 11.56 | 408 | 75 | 100 | 74 | 2000 | 1200 | 1650 | 2000 | DN50 | |
| 8 | 116 | 11.78 | 416 | 11.53 | 407 | 75 | 100 | 74 | 2000 | 1200 | 1650 | 2000 | DN50 | ||
| 10 | 145 | 11.57 | 409 | 10.11 | 357 | 75 | 100 | 74 | 2000 | 1200 | 1650 | 2000 | DN50 | ||
| DWW-90 | 7 | 102 | 14.6 | 515 | 13.61 | 480 | 90 | 120 | 76 | 2800 | 1800 | 1860 | 2800 | DN50 | |
| 8 | 116 | 14.32 | 506 | 13.47 | 476 | 90 | 120 | 76 | 2800 | 1800 | 1860 | 2800 | DN50 | ||
| 10 | 145 | 13.55 | 478 | 12.5 | 441 | 90 | 120 | 76 | 2800 | 1800 | 1860 | 2800 | DN50 | ||
| DWW-90W | 7 | 102 | 14.6 | 515 | 13.61 | 480 | 90 | 120 | 76 | 2800 | 1800 | 1860 | 2180 | DN50 | |
| 8 | 116 | 14.32 | 506 | 13.47 | 476 | 90 | 120 | 76 | 2800 | 1800 | 1860 | 2180 | DN50 | ||
| 10 | 145 | 13.55 | 478 | 12.5 | 441 | 90 | 120 | 76 | 2800 | 1800 | 1860 | 2180 | DN50 | ||
| DWW-110 | 7 | 102 | 20.27 | 716 | N/A*** | N/A*** | 110 | 150 | 78 | 2800 | 1800 | 1860 | 3200 | DN65 | |
| 8 | 116 | 19.03 | 672 | N/A*** | N/A*** | 110 | 150 | 78 | 2800 | 1800 | 1860 | 3200 | DN65 | ||
| 10 | 145 | 16.65 | 588 | 15.57 | 550 | 110 | 150 | 78 | 2800 | 1800 | 1860 | 3200 | DN65 | ||
| DWW-110W | 7 | 102 | 20.27 | 716 | N/A*** | N/A*** | 110 | 150 | 78 | 2800 | 1800 | 1860 | 3050 | DN65 | |
| 8 | 116 | 19.03 | 672 | N/A*** | N/A*** | 110 | 150 | 78 | 2800 | 1800 | 1860 | 3050 | DN65 | ||
| 10 | 145 | 16.65 | 588 | 15.57 | 550 | 110 | 150 | 78 | 2800 | 1800 | 1860 | 3050 | DN65 | ||
| DWW-132 | 7 | 102 | 23.94 | 845 | 20.09 | 709 | 132 | 175 | 78 | 2800 | 1800 | 1860 | 3340 | DN65 | |
| 8 | 116 | 22.47 | 793 | 19.87 | 702 | 132 | 175 | 78 | 2800 | 1800 | 1860 | 3340 | DN65 | ||
| 10 | 145 | 20.19 | 713 | N/A*** | N/A*** | 132 | 175 | 78 | 2800 | 1800 | 1860 | 3340 | DN65 | ||
| DWW-132W | 7 | 102 | 23.94 | 845 | 20.48 | 723 | 132 | 175 | 78 | 2800 | 1800 | 1860 | 3170 | DN65 | |
| 8 | 116 | 22.47 | 793 | 20.26 | 715 | 132 | 175 | 78 | 2800 | 1800 | 1860 | 3170 | DN65 | ||
| 10 | 145 | 20.19 | 713 | 19.82 | 700 | 132 | 175 | 78 | 2800 | 1800 | 1860 | 3170 | DN65 | ||
| DWW-160 | 7 | 102 | 27.26 | 962 | 25.47 | 899 | 160 | 215 | 78 | 2800 | 1800 | 1860 | 3700 | DN65 | |
| 8 | 116 | 25.86 | 913 | 25.17 | 889 | 160 | 215 | 78 | 2800 | 1800 | 1860 | 3700 | DN65 | ||
| 10 | 145 | 23.87 | 843 | 23.18 | 819 | 160 | 215 | 78 | 2800 | 1800 | 1860 | 3700 | DN65 | ||
| DWW-160W | 7 | 102 | 27.26 | 962 | 25.47 | 899 | 160 | 215 | 78 | 2800 | 1800 | 1860 | 3300 | DN65 | |
| 8 | 116 | 25.86 | 913 | 25.17 | 889 | 160 | 215 | 78 | 2800 | 1800 | 1860 | 3300 | DN65 | ||
| 10 | 145 | 23.87 | 843 | 23.8 | 819 | 160 | 215 | 78 | 2800 | 1800 | 1860 | 3300 | DN65 | ||
| DWW-185 | 7 | 102 | 30.19 | 1066 | 28.88 | 1571 | 185 | 250 | 78 | 2800 | 1800 | 1860 | 3900 | DN65 | |
| 8 | 116 | 29.53 | 1043 | 28.3 | 999 | 185 | 250 | 78 | 2800 | 1800 | 1860 | 3900 | DN65 | ||
| 10 | 145 | 27.2 | 960 | 27.17 | 960 | 185 | 250 | 78 | 2800 | 1800 | 1860 | 3900 | DN65 | ||
| DWW-185W | 7 | 102 | 30.19 | 1066 | 28.88 | 1571 | 185 | 250 | 78 | 2800 | 1800 | 1860 | 3460 | DN65 | |
| 8 | 116 | 29.53 | 1043 | 28.3 | 999 | 185 | 250 | 78 | 2800 | 1800 | 1860 | 3460 | DN65 | ||
| 10 | 145 | 27.2 | 960 | 27.17 | 960 | 185 | 250 | 78 | 2800 | 1800 | 1860 | 3460 | DN65 | ||
| DWW-200W | 7 | 102 | 36.41 | 1286 | 31.14 | 1100 | 200 | 270 | 78 | 3100 | 2150 | 2200 | 4300 | DN100 | |
| 8 | 116 | 33.86 | 1196 | 30.52 | 1078 | 200 | 270 | 78 | 3100 | 2150 | 2200 | 4300 | DN100 | ||
| 10 | 145 | 30.35 | 1071 | 28.82 | 1018 | 200 | 270 | 78 | 3100 | 2150 | 2200 | 4300 | DN100 | ||
| DWW-220W | 7 | 102 | 38.99 | 1377 | 37.54 | 1325 | 220 | 300 | 78 | 3100 | 2150 | 2200 | 4500 | DN100 | |
| 8 | 116 | 37.93 | 1339 | 36.78 | 1299 | 220 | 300 | 78 | 3100 | 2150 | 2200 | 4500 | DN100 | ||
| 10 | 145 | 33.79 | 1193 | 31.08 | 1097 | 220 | 300 | 78 | 3100 | 2150 | 2200 | 4500 | DN100 | ||
| DWW-250W | 7 | 102 | 47.26 | 1669 | 41.53 | 1466 | 250 | 350 | 78 | 3100 | 2150 | 2200 | 4550 | DN100 | |
| 8 | 116 | 43.31 | 1529 | 40.69 | 1437 | 250 | 350 | 78 | 3100 | 2150 | 2200 | 4550 | DN100 | ||
| 10 | 145 | 38.88 | 1373 | 37.43 | 1322 | 250 | 350 | 78 | 3100 | 2150 | 2200 | 4550 | DN100 | ||
| DWW-280W | 7 | 102 | 51.04 | 1802 | N/A*** | N/A*** | 280 | 375 | 80 | 3400 | 2400 | 2200 | 4800 | DN100 | |
| 8 | 116 | 47.24 | 1668 | N/A*** | N/A*** | 280 | 375 | 80 | 3400 | 2400 | 2200 | 4800 | DN100 | ||
| 10 | 145 | 43.26 | 1528 | 41.4 | 1462 | 280 | 375 | 80 | 3400 | 2400 | 2200 | 4800 | DN100 | ||
| DWW-315W | 7 | 102 | 52.03 | 1837 | N/A*** | N/A*** | 315 | 425 | 80 | 3400 | 2400 | 2200 | 5000 | DN100 | |
| 8 | 116 | 51.04 | 1802 | N/A*** | N/A*** | 315 | 425 | 80 | 3400 | 2400 | 2200 | 5000 | DN100 | ||
| 10 | 145 | 47.18 | 1666 | N/A*** | N/A*** | 315 | 425 | 80 | 3400 | 2400 | 2200 | 5000 | DN100 | ||
Low Pressure Dry Type Oil-free Air Compressor Technical Parameters
| Model | Maximum working pressure | Capacity(FAD)* | Installed motor power |
Cooling Method | Noise Level** | Dimensions (mm) |
Weight | Air Outlet Pipe Diameter |
|||||||
| 50 Hz | 60 Hz | ||||||||||||||
| bar(e) | psig | m³/min | cfm | m³/min | cfm | kW | hp | dB(A) | L | W | H | kG | |||
| DWL-55-2 | 2.5 | 37 | 15.33 | 541 | 14.4 | 508 | 55 | 75 | Air Cooling W-water Cooling | 69 | 2100 | 1500 | 1790 | 2500 | DN100 |
| DWL-55-3 | 3.5 | 51 | 12.78 | 451 | 10.85 | 383 | 55 | 75 | 69 | 2100 | 1500 | 1790 | 2500 | DN100 | |
| DWL-75-2 | 2.5 | 37 | 19.92 | 703 | 19.85 | 701 | 75 | 100 | 69 | 2100 | 1500 | 1790 | 2650 | DN100 | |
| DWL-75-3 | 3.5 | 51 | 16.3 | 575 | 15.86 | 560 | 75 | 100 | 69 | 2100 | 1500 | 1790 | 2650 | DN100 | |
| DWL-90-2 | 2.5 | 37 | 26.07 | 921 | 26.28 | 928 | 90 | 120 | 72 | 2800 | 1800 | 1860 | 2750 | DN100 | |
| DWL-90-3 | 3.5 | 51 | 19.54 | 690 | 18.3 | 646 | 90 | 120 | 72 | 2100 | 1500 | 1790 | 2750 | DN100 | |
| DWL-110(W)-2 | 2.5 | 37 | 33.16 | 1171 | 29.82 | 1053 | 110 | 150 | 72 | 3100 | 2150 | 2200 | 3500 | DN150 | |
| DWL-110(W)-3 | 3.5 | 51 | 25.6 | 904 | 23.9 | 884 | 110 | 150 | 72 | 2800 | 1800 | 1860 | 3000 | DN150 | |
| DWL-132(W)-2 | 2.5 | 37 | 40.24 | 1421 | 36.99 | 1271 | 132 | 175 | 72 | 3100 | 2150 | 2200 | 3600 | DN150 | |
| DWL-132(W)-3 | 3.5 | 51 | 27.23 | 961 | 29.43 | 1039 | 132 | 175 | 72 | 2800 | 1800 | 1860 | 3100 | DN150 | |
| DWL-160(W)-2 | 2.5 | 37 | 49.42 | 1745 | 45.2 | 1596 | 160 | 215 | 76 | 3100 | 2150 | 2200 | 3900 | DN150 | |
| DWL-160(W)-3 | 3.5 | 51 | 35.75 | 1262 | 35.12 | 1240 | 160 | 215 | 76 | 3100 | 2150 | 2200 | 3800 | DN150 | |
| DWL-185(W)-2 | 2.5 | 37 | 56.02 | 1989 | 52.71 | 1861 | 185 | 250 | 79 | 3400 | 2400 | 2200 | 4100 | DN150 | |
| DWL-185(W)-3 | 3.5 | 51 | 42.21 | 1490 | 40.28 | 1422 | 185 | 250 | 79 | 3400 | 2400 | 2200 | 4000 | DN150 | |
*) FAD in accordance with ISO 1217 : 2009, Annex C: Absolute intake pressure 1 bar (a), cooling and air intake temperature 20 °C
**) Noise level as per ISO 2151 and the basic standard ISO 9614-2, operation at maximum operating pressure and maximum speed; tolerance: ± 3 dB(A)
***) TBD-To Be Discussed
****) W-Water cooling
DENAIR Factory
Why Choose DENAIR ?
1.Original Germany AERZEN/DENAIR air end,larger air delivery,lower noise.
2. Oil free screw air compressor Pass CE, ISO9001 Quality Certification
3. One of 3 biggest air compressor manufacturer in China
4. Complete before-on-after sales service
5. Immediate reply or solution by email or call
6.Special oil gas separator with patents
7.High efficiency motor, up to 96%
FAQ
Q1: Are you factory or trade company?
A1: We are factory.
Q2: What the exactly address of your factory?
A2: Our company is located in No. 6767, Tingfeng Rd. Xihu (West Lake) Dis.n District, ZheJiang 201502, China
And our factory is located in No. 366, YangzhuangBang Street, Pingxing Rd., Xindai Town, HangZhou, ZHangZhoug Province, China
Q3: Warranty terms of your machine?
A3: Two years warranty for the machine and technical support according to your needs.
Q4: Will you provide some spare parts of the machines?
A4: Yes, of course.
Q5: How long will you take to arrange production?
A5: 380V 50HZ we can delivery the goods within 10 days. Other electricity or other color we will delivery within 22 days
Q6: Can you accept OEM orders?
A6: Yes, with professional design team, OEM orders are highly welcome
| Lubrication Style: | Oil-free |
|---|---|
| Cooling System: | Air Cooling and Water Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Vertical |
| Structure Type: | Closed Type |
| Installation Type: | Stationary Type |
| Customization: |
Available
|
|
|---|
.webp)
What are the differences between stationary and portable air compressors?
Stationary and portable air compressors are two common types of air compressors with distinct features and applications. Here are the key differences between them:
1. Mobility:
The primary difference between stationary and portable air compressors is their mobility. Stationary air compressors are designed to be permanently installed in a fixed location, such as a workshop or a factory. They are typically larger, heavier, and not easily movable. On the other hand, portable air compressors are smaller, lighter, and equipped with handles or wheels for easy transportation. They can be moved from one location to another, making them suitable for jobsites, construction sites, and other mobile applications.
2. Power Source:
Another difference lies in the power source used by stationary and portable air compressors. Stationary compressors are usually powered by electricity, as they are designed for continuous operation in a fixed location with access to power outlets. They are connected to the electrical grid or have dedicated wiring. In contrast, portable compressors are available in various power options, including electric, gasoline, and diesel engines. This versatility allows them to operate in remote areas or sites without readily available electricity.
3. Tank Capacity:
Tank capacity is also a distinguishing factor between stationary and portable air compressors. Stationary compressors often have larger storage tanks to store compressed air for extended periods. The larger tanks enable them to deliver a continuous and steady supply of compressed air for longer durations without the need for frequent cycling. Portable compressors, due to their compact size and portability, generally have smaller tank capacities, which may be sufficient for intermittent or smaller-scale applications.
4. Performance and Output:
The performance and output capabilities of stationary and portable air compressors can vary. Stationary compressors are typically designed for high-volume applications that require a consistent and continuous supply of compressed air. They often have higher horsepower ratings, larger motor sizes, and higher air delivery capacities. Portable compressors, while generally offering lower horsepower and air delivery compared to their stationary counterparts, are still capable of delivering sufficient air for a range of applications, including pneumatic tools, inflation tasks, and light-duty air-powered equipment.
5. Noise Level:
Noise level is an important consideration when comparing stationary and portable air compressors. Stationary compressors, being larger and built for industrial or commercial settings, are often equipped with noise-reducing features such as sound insulation and vibration dampening. They are designed to operate at lower noise levels, which is crucial for maintaining a comfortable working environment. Portable compressors, while efforts are made to reduce noise, may produce higher noise levels due to their compact size and portability.
6. Price and Cost:
Stationary and portable air compressors also differ in terms of price and cost. Stationary compressors are generally more expensive due to their larger size, higher power output, and industrial-grade construction. They often require professional installation and may involve additional costs such as electrical wiring and system setup. Portable compressors, being smaller and more versatile, tend to have a lower upfront cost. They are suitable for individual users, contractors, and small businesses with budget constraints or flexible air supply needs.
When selecting between stationary and portable air compressors, it is essential to consider the specific requirements of the intended application, such as mobility, power source availability, air demands, and noise considerations. Understanding these differences will help in choosing the appropriate type of air compressor for the intended use.
.webp)
What safety precautions should be taken when working with compressed air?
Working with compressed air requires adherence to certain safety precautions to prevent accidents and ensure the well-being of individuals involved. Here are some important safety measures to consider:
1. Personal Protective Equipment (PPE):
Wear appropriate PPE, including safety goggles or a face shield to protect eyes from flying debris or particles, hearing protection to reduce noise exposure, and gloves to safeguard hands from potential hazards.
2. Compressed Air Storage:
Avoid storing compressed air in containers that are not designed for this purpose, such as soda bottles or makeshift containers. Use approved and properly labeled air storage tanks or cylinders that can handle the pressure and are regularly inspected and maintained.
3. Pressure Regulation:
Ensure that the air pressure is regulated to a safe level suitable for the equipment and tools being used. High-pressure air streams can cause serious injuries, so it is important to follow the manufacturer’s recommendations and never exceed the maximum allowable pressure.
4. Air Hose Inspection:
Regularly inspect air hoses for signs of damage, such as cuts, abrasions, or leaks. Replace damaged hoses immediately to prevent potential accidents or loss of pressure.
5. Air Blowguns:
Exercise caution when using air blowguns. Never direct compressed air towards yourself or others, as it can cause eye injuries, hearing damage, or dislodge particles that may be harmful if inhaled. Always point blowguns away from people or any sensitive equipment or materials.
6. Air Tool Safety:
Follow proper operating procedures for pneumatic tools. Ensure that tools are in good working condition, and inspect them before each use. Use the appropriate accessories, such as safety guards or shields, to prevent accidental contact with moving parts.
7. Air Compressor Maintenance:
Maintain air compressors according to the manufacturer’s guidelines. Regularly check for leaks, clean or replace filters, and drain moisture from the system. Proper maintenance ensures the safe and efficient operation of the compressor.
8. Training and Education:
Provide adequate training and education to individuals working with compressed air. Ensure they understand the potential hazards, safe operating procedures, and emergency protocols. Encourage open communication regarding safety concerns and implement a culture of safety in the workplace.
9. Lockout/Tagout:
When performing maintenance or repairs on compressed air systems, follow lockout/tagout procedures to isolate the equipment from energy sources and prevent accidental startup. This ensures the safety of the individuals working on the system.
10. Proper Ventilation:
Ensure proper ventilation in enclosed areas where compressed air is used. Compressed air can displace oxygen, leading to a potential risk of asphyxiation. Adequate ventilation helps maintain a safe breathing environment.
By adhering to these safety precautions, individuals can minimize the risks associated with working with compressed air and create a safer work environment.
.webp)
What is the purpose of an air compressor?
An air compressor serves the purpose of converting power, typically from an electric motor or an engine, into potential energy stored in compressed air. It achieves this by compressing and pressurizing air, which can then be used for various applications. Here’s a detailed explanation of the purpose of an air compressor:
1. Powering Pneumatic Tools: One of the primary uses of an air compressor is to power pneumatic tools. Compressed air can be used to operate a wide range of tools, such as impact wrenches, nail guns, paint sprayers, sanders, and drills. The compressed air provides the necessary force and energy to drive these tools, making them efficient and versatile.
2. Supplying Clean and Dry Air: Air compressors are often used to supply clean and dry compressed air for various industrial processes. Many manufacturing and production operations require a reliable source of compressed air that is free from moisture, oil, and other contaminants. Air compressors equipped with appropriate filters and dryers can deliver high-quality compressed air for applications such as instrumentation, control systems, and pneumatic machinery.
3. Inflating Tires and Sports Equipment: Air compressors are commonly used for inflating tires, whether it’s for vehicles, bicycles, or sports equipment. They provide a convenient and efficient method for quickly filling tires with the required pressure. Air compressors are also used for inflating sports balls, inflatable toys, and other similar items.
4. Operating HVAC Systems: Air compressors play a crucial role in the operation of heating, ventilation, and air conditioning (HVAC) systems. They provide compressed air for controlling and actuating dampers, valves, and actuators in HVAC systems, enabling precise regulation of air flow and temperature.
5. Assisting in Industrial Processes: Compressed air is utilized in various industrial processes. It can be used for air blow-off applications, cleaning and drying parts, powering air-operated machinery, and controlling pneumatic systems. Air compressors provide a reliable and efficient source of compressed air that can be tailored to meet the specific requirements of different industrial applications.
6. Supporting Scuba Diving and Breathing Systems: In scuba diving and other breathing systems, air compressors are responsible for filling diving tanks and supplying breathable air to divers. These compressors are designed to meet strict safety standards and deliver compressed air that is free from contaminants.
Overall, the purpose of an air compressor is to provide a versatile source of compressed air for powering tools, supplying clean air for various applications, inflating tires and sports equipment, supporting industrial processes, and facilitating breathing systems in specific contexts.


editor by CX 2023-10-20
China factory Small Rotary Screw Air Compressor Single Phase Made in China, Sold Directly by Chinese Dealers air compressor parts
Product Description
Product Description
Inside Details:
Multiple models are available:
Technology Research and Development:
Advantages:
High efficient*Combined with direct driven arrangement for superior energy efficiency
*Water seals and cools for ideal compression
*Optimal compression processes with the water cooling
Minimum service costs *Only air filter and water filter need maintenance
*No lubricant costs
*Fast and easy for minimal downtime
High reliability*Simple and robust design
* Low-speed direct drive, no high speed gears
*Low operating temperatures, no special coatings
High-quality air *Low air temperature, easy to dry and treat
*No coating on routers that can contaminate or pollute the air
*Class 0 air quality
Environmental safety*Low noise level
*Reduce energy consumption
*No oil discharge to the environment
Technical parameters
| Model | Max Working Pressure |
Capacity | Motor Power | Connection | Dimension (L*W*H) |
Air Tank | ||
| — | bar | psig | L/min | hp | kw | inch | mm | L |
| C5EV | 8 | 116 | 200-400 | 5 | 3.7 | G1/2 | 800*540*755 | — |
| 10 | 145 | 175-350 | ||||||
| 12.5 | 182 | 150-300 | ||||||
| C6EV | 8 | 116 | 250-500 | 6 | 4.5 | G1/2 | 800*540*755 | — |
| 10 | 145 | 210-420 | ||||||
| 12.5 | 182 | 180-360 | ||||||
| C7EV | 8 | 116 | 315-630 | 7 | 5.5 | G1/2 | 800*540*755 | — |
| 10 | 145 | 275-550 | ||||||
| 12.5 | 182 | 210-420 | ||||||
| C10EV | 8 | 116 | 490-980 | 10 | 7.5 | G1/2 | 800*560*860 | — |
| 10 | 145 | 450-900 | ||||||
| 12.5 | 182 | 400-800 | ||||||
FAQ
Q1: Why customer choose us?
O: CHINAMFG Technology Development Co, Ltd is a professional manufacturer for air compressor and after treatment equipment. We have more than 20 years experience in producing and exporting air compressor, air dryer and air filter.
Q2: Are you a manufacturer or trading company?
O: Our factory is located in ZheJiang China, we have research and develop center, advanced processing equipment, professional technicians, rich experience workers and after-sales team to offer good quality products and good service to our customers. We also can provide you the OEM&ODM service.
Q3: What’s your delivery time?
O: Generally 10 days, if urgently order, pls contact our sales in advance
Q4: How long is your air compressor warranty?
O: One year for the whole machine when the compressor leave our factory.
Q5: How long could your air compressor be used?
O: Generally, more than 10 years
Q6: What’s payment term?
O: T/T, L/C, Paypal and etc. Also we could accept USD, RMB, Euro and other currency (Pls contact our sales for more information
Q7: How about your customer service?
O: 24 hours on-line service available
Q8: How about your after-sales service?
O: 1. Provide customers with installation and commissioning online instructions.
2. Well-trained engineers available to overseas service
3. World wide agents and after service available
| After-sales Service: | 1 Year |
|---|---|
| Warranty: | 1 Year |
| Lubrication Style: | Lubricated |
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Structure Type: | Closed Type |
| Samples: |
US$ 1350/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
Can air compressors be used for shipbuilding and maritime applications?
Air compressors are widely used in shipbuilding and maritime applications for a variety of tasks and operations. The maritime industry relies on compressed air for numerous essential functions. Here’s an overview of how air compressors are employed in shipbuilding and maritime applications:
1. Pneumatic Tools and Equipment:
Air compressors are extensively used to power pneumatic tools and equipment in shipbuilding and maritime operations. Pneumatic tools such as impact wrenches, drills, grinders, sanders, and chipping hammers require compressed air to function. The versatility and power provided by compressed air make it an ideal energy source for heavy-duty tasks, maintenance, and construction activities in shipyards and onboard vessels.
2. Painting and Surface Preparation:
Air compressors play a crucial role in painting and surface preparation during shipbuilding and maintenance. Compressed air is used to power air spray guns, sandblasting equipment, and other surface preparation tools. Compressed air provides the force necessary for efficient and uniform application of paints, coatings, and protective finishes, ensuring the durability and aesthetics of ship surfaces.
3. Pneumatic Actuation and Controls:
Air compressors are employed in pneumatic actuation and control systems onboard ships. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control propulsion systems, and manage various shipboard processes. Pneumatic control systems offer reliability and safety advantages in maritime applications.
4. Air Start Systems:
In large marine engines, air compressors are used in air start systems. Compressed air is utilized to initiate the combustion process in the engine cylinders. The compressed air is injected into the cylinders to turn the engine’s crankshaft, enabling the ignition of fuel and starting the engine. Air start systems are commonly found in ship propulsion systems and power generation plants onboard vessels.
5. Pneumatic Conveying and Material Handling:
In shipbuilding and maritime operations, compressed air is used for pneumatic conveying and material handling. Compressed air is utilized to transport bulk materials, such as cement, sand, and grain, through pipelines or hoses. Pneumatic conveying systems enable efficient and controlled transfer of materials, facilitating construction, cargo loading, and unloading processes.
6. Air Conditioning and Ventilation:
Air compressors are involved in air conditioning and ventilation systems onboard ships. Compressed air powers air conditioning units, ventilation fans, and blowers, ensuring proper air circulation, cooling, and temperature control in various ship compartments, cabins, and machinery spaces. Compressed air-driven systems contribute to the comfort, safety, and operational efficiency of maritime environments.
These are just a few examples of how air compressors are utilized in shipbuilding and maritime applications. Compressed air’s versatility, reliability, and convenience make it an indispensable energy source for various tasks and systems in the maritime industry.
.webp)
How does the horsepower of an air compressor affect its capabilities?
The horsepower of an air compressor is a crucial factor that directly impacts its capabilities and performance. Here’s a closer look at how the horsepower rating affects an air compressor:
Power Output:
The horsepower rating of an air compressor indicates its power output or the rate at which it can perform work. Generally, a higher horsepower rating translates to a greater power output, allowing the air compressor to deliver more compressed air per unit of time. This increased power output enables the compressor to operate pneumatic tools and equipment that require higher air pressure or greater airflow.
Air Pressure:
The horsepower of an air compressor is directly related to the air pressure it can generate. Air compressors with higher horsepower ratings have the capacity to produce higher air pressures. This is particularly important when operating tools or machinery that require specific air pressure levels to function optimally. For example, heavy-duty pneumatic tools like jackhammers or impact wrenches may require higher air pressure to deliver the necessary force.
Air Volume:
In addition to air pressure, the horsepower of an air compressor also affects the air volume or airflow it can provide. Higher horsepower compressors can deliver greater volumes of compressed air, measured in cubic feet per minute (CFM). This increased airflow is beneficial when using pneumatic tools that require a continuous supply of compressed air, such as paint sprayers or sandblasters.
Duty Cycle:
The horsepower rating of an air compressor can also influence its duty cycle. The duty cycle refers to the amount of time an air compressor can operate continuously before it needs to rest and cool down. Higher horsepower compressors often have larger and more robust components, allowing them to handle heavier workloads and operate for longer periods without overheating. This is particularly important in demanding applications where continuous and uninterrupted operation is required.
Size and Portability:
It’s worth noting that the horsepower rating can also affect the physical size and portability of an air compressor. Higher horsepower compressors tend to be larger and heavier due to the need for more substantial motors and components to generate the increased power output. This can impact the ease of transportation and maneuverability, especially in portable or mobile applications.
When selecting an air compressor, it is essential to consider the specific requirements of your intended applications. Factors such as desired air pressure, airflow, duty cycle, and portability should be taken into account. It’s important to choose an air compressor with a horsepower rating that aligns with the demands of the tools and equipment you plan to operate, ensuring optimal performance and efficiency.
Consulting the manufacturer’s specifications and guidelines can provide valuable information on how the horsepower rating of an air compressor corresponds to its capabilities and suitability for different tasks.
.webp)
What are the different types of air compressors?
There are several different types of air compressors, each with its own unique design and operating principle. Here’s an overview of the most commonly used types:
1. Reciprocating Air Compressors: Reciprocating air compressors, also known as piston compressors, use one or more pistons driven by a crankshaft to compress air. They operate by drawing air into a cylinder, compressing it with the piston’s up-and-down motion, and discharging the compressed air into a storage tank. Reciprocating compressors are known for their high pressure capabilities and are commonly used in industrial applications.
2. Rotary Screw Air Compressors: Rotary screw air compressors utilize two interlocking screws to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads. These compressors are known for their continuous duty cycle, high efficiency, and quiet operation. They are widely used in industrial, commercial, and automotive applications.
3. Centrifugal Air Compressors: Centrifugal air compressors rely on the principle of centrifugal force to compress air. They use a high-speed impeller to accelerate the incoming air and then convert the kinetic energy into pressure energy. Centrifugal compressors are commonly used in large-scale industrial applications that require high volumes of compressed air.
4. Rotary Vane Air Compressors: Rotary vane air compressors employ a rotor with sliding vanes that compress the air. As the rotor rotates, the vanes slide in and out of the rotor, creating compression chambers. Air is drawn in, trapped, and compressed as the vanes move. These compressors are compact, reliable, and suitable for small to medium-sized applications.
5. Axial Flow Air Compressors: Axial flow air compressors are primarily used in specialized applications such as aircraft engines and gas turbines. They utilize a series of rotating and stationary blades to compress air in a continuous flow. Axial flow compressors are known for their high flow rates and are designed for applications that require large volumes of compressed air.
6. Scroll Air Compressors: Scroll air compressors consist of two interlocking spirals or scrolls that compress the air. One spiral remains stationary while the other orbits around it, creating a series of expanding and contracting pockets that compress the air. Scroll compressors are compact, reliable, and commonly used in applications where low noise and oil-free air are required, such as medical and dental equipment.
These are just a few examples of the different types of air compressors available. Each type has its own advantages, capabilities, and ideal applications. The choice of air compressor depends on factors such as required pressure, flow rate, duty cycle, noise level, oil-free operation, and specific application requirements.


editor by CX 2023-10-20
China factory New Type 3 Phase Oil Less 12bar 55kw 75HP Frequency Conversion Screw Air Compressor for Sale with Hot selling
Product Description
New Type 3 Phase Oil Less 12bar 55kw 75hp Frequency Conversion Screw Air Compressor for Sale
Technical Parameters Of PM Variable speed screw air compressor:
|
Model |
WZS-75AVF |
|
Air Flow/Working pressure |
9.7 m3/min @ 8bar |
|
8.6 m3/min @ 10bar |
|
|
Cooling type of COMPRESSOR |
Air cooling |
|
Cooling type of MOTOR |
Oil cooling |
|
Driven method |
Integrated connection |
|
Start way |
Soft VSD Start |
|
VSD inverter |
INOVANCE / HOLIP / VEICHI |
|
Exhaust Temp. |
< ambient temp. +8 degrees |
|
Oil content |
<2ppm |
|
Noise |
65±2 dB(A) |
|
Power |
380VAC/3ph/0~200Hz |
|
Motor power |
55kw/75hp |
|
Dimension |
1700*1270*1500mm |
|
Weight |
1200kg |
| Model | Power (KW) |
MAX Pressure (Bar) |
Air flow (m³/min) |
Noise dB(A) |
Compression stages |
Outlet diameter (Inch) |
Dimension (mm) |
Weight (kg) |
||
| L | W | H | ||||||||
| WZS-10AVF | 7.5 | 8.5 | 1.0 | 60±2 | Single | 3/4″ | 1000 | 600 | 1000 | 280 |
| 10.5 | 0.8 | |||||||||
| WZS-15AVF | 11 | 8.5 | 1.8 | 62±2 | Single | 1″ | 1300 | 860 | 1030 | 380 |
| 10.5 | 1.6 | |||||||||
| WZS-20AVF | 15 | 8.5 | 2.2 | 63±2 | Single | 1″ | 1300 | 860 | 1030 | 480 |
| 10.5 | 1.8 | |||||||||
| WZS-30AVF | 22 | 8.5 | 3.8 | 66±2 | Single | 1¼” | 1380 | 850 | 1150 | 620 |
| 10.5 | 3.0 | |||||||||
| WZS-40AVF | 30 | 8.5 | 5.0 | 68±2 | Single | 1¼” | 1380 | 850 | 1150 | 680 |
| 10.5 | 4.4 | |||||||||
| WZS-50AVF | 37 | 8.5 | 6.2 | 68±2 | Single | 1½” | 1600 | 1000 | 1370 | 850 |
| 10.5 | 5.4 | |||||||||
| WZS-60AVF | 45 | 8.5 | 8.0 | 68±2 | Single | 1½” | 1600 | 1000 | 1450 | 880 |
| 10.5 | 6.8 | |||||||||
| WZS-75AVF | 55 | 8.5 | 9.7 | 70±2 | Single | 2″ | 1700 | 1270 | 1500 | 1350 |
| 10.5 | 8.5 | |||||||||
| WZS-100AVF | 75 | 8.5 | 13.2 | 70±2 | Single | 2″ | 2150 | 1300 | 1700 | 1950 |
| 10.5 | 11.6 | |||||||||
Before quotation:
1.Before quoting, what should users offer?
1).Discharge pressure (Bar, Mpa or Psi)
2).Air discharge/Air flow/Air capacity (m3/min or CFM)
3).Power supply (220/380V, 50/60Hz, 3Phase)
2.If I don’t know the pressure and air flow, what should I do?
1).Take the picture of nameplate, we will advise the suitable air compressor to you.
2).Tell us what industry you are, we can advise the suitable 1 (so as to air tank / air dryer / air filters).
High Efficiency PM Motor and Energy Saving
*With the high-performance permanent magnet material, PM motor won’t lose magnetism even under 120°c and can run for more than 15 years.
*No motor bearing: permanent magnet rotors is installed directly on the stretch out shaft of Male rotor. This structure doesn’t have the bearing and eliminates the motor bearing fault.
*Comparing to normal variable speed motor, the permanent magnet synchronous motor performs with even better energy efficiency. Especially in the low-speed condition, it can still maintain a high motor efficiency.
SHIPPING
Delivery: time 5-25 working days after payment receipt confirmed(based on actual quantity)
packing:standard export packing. or customized packing as your
Professional: goods shipping forwarder.
FAQ
Q: OEM/ODM, or customers logo printed is available?
Yes, OEM/ODM, customers logo is welcomed.
Q: Delivery date?
Usually 5-25 workdays after receiving deposit, specific delivery date based on order quantity
Q: what’s your payment terms?
Regularly doing 30% deposit and 70% balance by T/T, Western Union, Paypal, other payment terms also can be discussed based on our cooperation.
Q: How to control your quality?
We have professional QC team, control the quality during the mass production and inspect completely goods before shipping.
Q: If we don’t have shipping forwarder in China, would you do this for us?
We can offer you best shipping line to ensure you can get the goods timely at best price.
Q: come to China before, can you be my guide in China?
We are happy to provide you orservice, such as booking ticket, pick up at the airport, booking hotel, accompany visiting market or factory
| After-sales Service: | Video Technical Support |
|---|---|
| Warranty: | 1 Year |
| Lubrication Style: | Oil-less |
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Vertical |
| Customization: |
Available
|
|
|---|
.webp)
What role do air dryers play in compressed air systems?
Air dryers play a crucial role in compressed air systems by removing moisture and contaminants from the compressed air. Compressed air, when generated, contains water vapor from the ambient air, which can condense and cause issues in the system and end-use applications. Here’s an overview of the role air dryers play in compressed air systems:
1. Moisture Removal:
Air dryers are primarily responsible for removing moisture from the compressed air. Moisture in compressed air can lead to problems such as corrosion in the system, damage to pneumatic tools and equipment, and compromised product quality in manufacturing processes. Air dryers utilize various techniques, such as refrigeration, adsorption, or membrane separation, to reduce the dew point of the compressed air and eliminate moisture.
2. Contaminant Removal:
In addition to moisture, compressed air can also contain contaminants like oil, dirt, and particles. Air dryers help in removing these contaminants to ensure clean and high-quality compressed air. Depending on the type of air dryer, additional filtration mechanisms may be incorporated to enhance the removal of oil, particulates, and other impurities from the compressed air stream.
3. Protection of Equipment and Processes:
By removing moisture and contaminants, air dryers help protect the downstream equipment and processes that rely on compressed air. Moisture and contaminants can negatively impact the performance, reliability, and lifespan of pneumatic tools, machinery, and instrumentation. Air dryers ensure that the compressed air supplied to these components is clean, dry, and free from harmful substances, minimizing the risk of damage and operational issues.
4. Improved Productivity and Efficiency:
Utilizing air dryers in compressed air systems can lead to improved productivity and efficiency. Dry and clean compressed air reduces the likelihood of equipment failures, downtime, and maintenance requirements. It also prevents issues such as clogging of air lines, malfunctioning of pneumatic components, and inconsistent performance of processes. By maintaining the quality of compressed air, air dryers contribute to uninterrupted operations, optimized productivity, and cost savings.
5. Compliance with Standards and Specifications:
Many industries and applications have specific standards and specifications for the quality of compressed air. Air dryers play a vital role in meeting these requirements by ensuring that the compressed air meets the desired quality standards. This is particularly important in industries such as food and beverage, pharmaceuticals, electronics, and automotive, where clean and dry compressed air is essential for product integrity, safety, and regulatory compliance.
By incorporating air dryers into compressed air systems, users can effectively control moisture and contaminants, protect equipment and processes, enhance productivity, and meet the necessary quality standards for their specific applications.
.webp)
How does the horsepower of an air compressor affect its capabilities?
The horsepower of an air compressor is a crucial factor that directly impacts its capabilities and performance. Here’s a closer look at how the horsepower rating affects an air compressor:
Power Output:
The horsepower rating of an air compressor indicates its power output or the rate at which it can perform work. Generally, a higher horsepower rating translates to a greater power output, allowing the air compressor to deliver more compressed air per unit of time. This increased power output enables the compressor to operate pneumatic tools and equipment that require higher air pressure or greater airflow.
Air Pressure:
The horsepower of an air compressor is directly related to the air pressure it can generate. Air compressors with higher horsepower ratings have the capacity to produce higher air pressures. This is particularly important when operating tools or machinery that require specific air pressure levels to function optimally. For example, heavy-duty pneumatic tools like jackhammers or impact wrenches may require higher air pressure to deliver the necessary force.
Air Volume:
In addition to air pressure, the horsepower of an air compressor also affects the air volume or airflow it can provide. Higher horsepower compressors can deliver greater volumes of compressed air, measured in cubic feet per minute (CFM). This increased airflow is beneficial when using pneumatic tools that require a continuous supply of compressed air, such as paint sprayers or sandblasters.
Duty Cycle:
The horsepower rating of an air compressor can also influence its duty cycle. The duty cycle refers to the amount of time an air compressor can operate continuously before it needs to rest and cool down. Higher horsepower compressors often have larger and more robust components, allowing them to handle heavier workloads and operate for longer periods without overheating. This is particularly important in demanding applications where continuous and uninterrupted operation is required.
Size and Portability:
It’s worth noting that the horsepower rating can also affect the physical size and portability of an air compressor. Higher horsepower compressors tend to be larger and heavier due to the need for more substantial motors and components to generate the increased power output. This can impact the ease of transportation and maneuverability, especially in portable or mobile applications.
When selecting an air compressor, it is essential to consider the specific requirements of your intended applications. Factors such as desired air pressure, airflow, duty cycle, and portability should be taken into account. It’s important to choose an air compressor with a horsepower rating that aligns with the demands of the tools and equipment you plan to operate, ensuring optimal performance and efficiency.
Consulting the manufacturer’s specifications and guidelines can provide valuable information on how the horsepower rating of an air compressor corresponds to its capabilities and suitability for different tasks.
.webp)
What are the safety considerations when operating an air compressor?
Operating an air compressor requires careful attention to safety to prevent accidents, injuries, and equipment damage. Here are some important safety considerations to keep in mind:
1. Read the Manual: Before operating an air compressor, thoroughly read and understand the manufacturer’s instruction manual. Familiarize yourself with the specific safety guidelines, recommended operating procedures, and any specific precautions or warnings provided by the manufacturer.
2. Proper Ventilation: Ensure that the area where the air compressor is operated has adequate ventilation. Compressed air can produce high levels of heat and exhaust gases. Good ventilation helps dissipate heat, prevent the buildup of fumes, and maintain a safe working environment.
3. Personal Protective Equipment (PPE): Always wear appropriate personal protective equipment, including safety glasses or goggles, hearing protection, and non-slip footwear. Depending on the task, additional PPE such as gloves, a dust mask, or a face shield may be necessary to protect against specific hazards.
4. Pressure Relief: Air compressors should be equipped with pressure relief valves or devices to prevent overpressurization. Ensure that these safety features are in place and functioning correctly. Regularly inspect and test the pressure relief mechanism to ensure its effectiveness.
5. Secure Connections: Use proper fittings, hoses, and couplings to ensure secure connections between the air compressor, air tools, and accessories. Inspect all connections before operation to avoid leaks or sudden hose disconnections, which can cause injuries or damage.
6. Inspect and Maintain: Regularly inspect the air compressor for any signs of damage, wear, or leaks. Ensure that all components, including hoses, fittings, and safety devices, are in good working condition. Follow the manufacturer’s recommended maintenance schedule to keep the compressor in optimal shape.
7. Electrical Safety: If the air compressor is electric-powered, take appropriate electrical safety precautions. Use grounded outlets and avoid using extension cords unless approved for the compressor’s power requirements. Protect electrical connections from moisture and avoid operating the compressor in wet or damp environments.
8. Safe Start-Up and Shut-Down: Properly start and shut down the air compressor following the manufacturer’s instructions. Ensure that all air valves are closed before starting the compressor and release all pressure before performing maintenance or repairs.
9. Training and Competence: Ensure that operators are adequately trained and competent in using the air compressor and associated tools. Provide training on safe operating procedures, hazard identification, and emergency response protocols.
10. Emergency Preparedness: Have a clear understanding of emergency procedures and how to respond to potential accidents or malfunctions. Know the location of emergency shut-off valves, fire extinguishers, and first aid kits.
By adhering to these safety considerations and implementing proper safety practices, the risk of accidents and injuries associated with operating an air compressor can be significantly reduced. Prioritizing safety promotes a secure and productive working environment.


editor by CX 2023-10-19
China Custom Diesel Engine Driven 300psi 33m3 Two Stage Mobile Screw Air Compressor (for water well drilling rig) supplier
Product Description
Product
The air compressor is equipped with a separate 2-stage air filtration system to protect all components from the harsh conditions on the construction site.
Features
National III diesel engine emission standards.
Reliable and durable.
Superior performance.
Atlas Copco’s patented screw rotor design ensures low energy consumption and high performance.Suitable for harsh working conditions
High-performance chassis design.
Enhance your engine performance.
Using low quality oil may damage your engine. Our heavy-duty fuel filters protect your engine, enhance its performance and extend its life.
Extend the service life of your air compressor .
Protect your compressor with a double air filter.
The air compressor is equipped with a separate 2-stage air filtration system to protect all components from the harsh conditions on the construction site.
Product specifications series parameters
| Item | Atlas portable air compressor | |||
| 1 | Model | XATS156C | XAHS166C | XAS186C |
| 2 | Volume flow m3/min | 10 | 10 | 11.5 |
| 3 | Working pressure bar | 10.3 | 12 | 7 |
| 4 | Air compressor oil volume L | 23 | 25 | 25 |
| 5 | Tank volume L | 42 | ||
| 6 | Diesel tank volume L | 175 | ||
| 7 | Noisy grade db(A) | 80+3 | ||
| 8 | Diesel engine | Cummins | ||
| 9 | Model | QSB3.9-C130 | ||
| 10 | Air cylinder QTY | 4 | ||
| 11 | Engine kw | 95 | ||
| 12 | Full engine speed rpm | 2300 | ||
| 13 | Engine unloading speed rpm | 1700 | ||
| 14 | Overall Length (Trailer type) mm | 4120 | ||
| 15 | Overall Width mm | 1900 | ||
| 16 | Overall Height mm | 2000 | ||
| 17 | Overall Weight kg | 1680 | ||
| 18 | Exhaust valves QTYxsize | 1×1 1/2”, 1×3/4” | ||
FAQ
Q1: What’s your delivery time?
A: 15 days to produce, within 3 days if in stock.
Q2: What’s methods of payments are accepted?
A: We agree T/T ,L/C , West Union ,Money Gram ,Paypal.
Q3: What about the shipments and package?
A: 40′ container for 2 sets, 20′ container for 1 set,
Machine in nude packing, spare parts in standard export wooden box.
Q4: Have you got any certificate?
A:We have got ISO,CE certificate.
Q5: How to control the quality?
A: We will control the quality by ISO and CE requests.
Q6: Do you have after-sale service and warranty service ?
A: Yes, we have.We can supply instruction for operation and maintenance.If necessary, we can send our engineer to repair the machine in your company.
Warranty is 1 year for the machine.
Q7: Can I trust your company ?
A: Our company has been certificated by Chinese government,and verified by SGS Inspection Company
| After-sales Service: | Online |
|---|---|
| Lubrication Style: | Lubricated |
| Cooling System: | Air Cooling |
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
What are the differences between stationary and portable air compressors?
Stationary and portable air compressors are two common types of air compressors with distinct features and applications. Here are the key differences between them:
1. Mobility:
The primary difference between stationary and portable air compressors is their mobility. Stationary air compressors are designed to be permanently installed in a fixed location, such as a workshop or a factory. They are typically larger, heavier, and not easily movable. On the other hand, portable air compressors are smaller, lighter, and equipped with handles or wheels for easy transportation. They can be moved from one location to another, making them suitable for jobsites, construction sites, and other mobile applications.
2. Power Source:
Another difference lies in the power source used by stationary and portable air compressors. Stationary compressors are usually powered by electricity, as they are designed for continuous operation in a fixed location with access to power outlets. They are connected to the electrical grid or have dedicated wiring. In contrast, portable compressors are available in various power options, including electric, gasoline, and diesel engines. This versatility allows them to operate in remote areas or sites without readily available electricity.
3. Tank Capacity:
Tank capacity is also a distinguishing factor between stationary and portable air compressors. Stationary compressors often have larger storage tanks to store compressed air for extended periods. The larger tanks enable them to deliver a continuous and steady supply of compressed air for longer durations without the need for frequent cycling. Portable compressors, due to their compact size and portability, generally have smaller tank capacities, which may be sufficient for intermittent or smaller-scale applications.
4. Performance and Output:
The performance and output capabilities of stationary and portable air compressors can vary. Stationary compressors are typically designed for high-volume applications that require a consistent and continuous supply of compressed air. They often have higher horsepower ratings, larger motor sizes, and higher air delivery capacities. Portable compressors, while generally offering lower horsepower and air delivery compared to their stationary counterparts, are still capable of delivering sufficient air for a range of applications, including pneumatic tools, inflation tasks, and light-duty air-powered equipment.
5. Noise Level:
Noise level is an important consideration when comparing stationary and portable air compressors. Stationary compressors, being larger and built for industrial or commercial settings, are often equipped with noise-reducing features such as sound insulation and vibration dampening. They are designed to operate at lower noise levels, which is crucial for maintaining a comfortable working environment. Portable compressors, while efforts are made to reduce noise, may produce higher noise levels due to their compact size and portability.
6. Price and Cost:
Stationary and portable air compressors also differ in terms of price and cost. Stationary compressors are generally more expensive due to their larger size, higher power output, and industrial-grade construction. They often require professional installation and may involve additional costs such as electrical wiring and system setup. Portable compressors, being smaller and more versatile, tend to have a lower upfront cost. They are suitable for individual users, contractors, and small businesses with budget constraints or flexible air supply needs.
When selecting between stationary and portable air compressors, it is essential to consider the specific requirements of the intended application, such as mobility, power source availability, air demands, and noise considerations. Understanding these differences will help in choosing the appropriate type of air compressor for the intended use.
.webp)
How does the horsepower of an air compressor affect its capabilities?
The horsepower of an air compressor is a crucial factor that directly impacts its capabilities and performance. Here’s a closer look at how the horsepower rating affects an air compressor:
Power Output:
The horsepower rating of an air compressor indicates its power output or the rate at which it can perform work. Generally, a higher horsepower rating translates to a greater power output, allowing the air compressor to deliver more compressed air per unit of time. This increased power output enables the compressor to operate pneumatic tools and equipment that require higher air pressure or greater airflow.
Air Pressure:
The horsepower of an air compressor is directly related to the air pressure it can generate. Air compressors with higher horsepower ratings have the capacity to produce higher air pressures. This is particularly important when operating tools or machinery that require specific air pressure levels to function optimally. For example, heavy-duty pneumatic tools like jackhammers or impact wrenches may require higher air pressure to deliver the necessary force.
Air Volume:
In addition to air pressure, the horsepower of an air compressor also affects the air volume or airflow it can provide. Higher horsepower compressors can deliver greater volumes of compressed air, measured in cubic feet per minute (CFM). This increased airflow is beneficial when using pneumatic tools that require a continuous supply of compressed air, such as paint sprayers or sandblasters.
Duty Cycle:
The horsepower rating of an air compressor can also influence its duty cycle. The duty cycle refers to the amount of time an air compressor can operate continuously before it needs to rest and cool down. Higher horsepower compressors often have larger and more robust components, allowing them to handle heavier workloads and operate for longer periods without overheating. This is particularly important in demanding applications where continuous and uninterrupted operation is required.
Size and Portability:
It’s worth noting that the horsepower rating can also affect the physical size and portability of an air compressor. Higher horsepower compressors tend to be larger and heavier due to the need for more substantial motors and components to generate the increased power output. This can impact the ease of transportation and maneuverability, especially in portable or mobile applications.
When selecting an air compressor, it is essential to consider the specific requirements of your intended applications. Factors such as desired air pressure, airflow, duty cycle, and portability should be taken into account. It’s important to choose an air compressor with a horsepower rating that aligns with the demands of the tools and equipment you plan to operate, ensuring optimal performance and efficiency.
Consulting the manufacturer’s specifications and guidelines can provide valuable information on how the horsepower rating of an air compressor corresponds to its capabilities and suitability for different tasks.
.webp)
In which industries are air compressors widely used?
Air compressors find extensive usage across various industries due to their versatility and ability to generate compressed air. Here are some industries where air compressors are widely employed:
1. Manufacturing: Air compressors are essential in manufacturing processes for powering pneumatic tools and equipment. They are used for tasks such as operating assembly lines, powering robotic machinery, running paint sprayers, and driving pneumatic actuators.
2. Construction: Air compressors play a crucial role in the construction industry. They power pneumatic tools like jackhammers, nail guns, impact wrenches, and concrete breakers. Compressed air is also used for concrete spraying, sandblasting, and operating air-powered lifts and hoists.
3. Automotive: Air compressors are widely used in automotive manufacturing and repair. They power air tools used in auto body shops, tire inflation equipment, pneumatic lifts, and air-operated brake systems. Compressed air is also utilized in vehicle painting and drying processes.
4. Oil and Gas: The oil and gas industry extensively relies on air compressors for various applications. They are used for pneumatic drilling, powering pneumatic tools in refineries and petrochemical plants, operating pneumatic valves and actuators, and providing instrument air for control systems.
5. Food and Beverage: Air compressors are employed in the food and beverage industry for tasks such as packaging, bottling, and sealing. They power pneumatic conveying systems, control air pressure in food processing equipment, and provide clean compressed air for food handling and storage.
6. Pharmaceutical and Healthcare: Air compressors find application in pharmaceutical manufacturing and healthcare facilities. They are used for operating medical equipment, such as ventilators and dental tools. Compressed air is also utilized in pharmaceutical processes, including tablet coating, fluid bed drying, and aseptic packaging.
7. Aerospace: The aerospace industry relies on air compressors for various applications, including aircraft maintenance and assembly. They power pneumatic tools for aircraft repair, provide compressed air for cleaning and pressurizing systems, and support ground operations, such as tire inflation and aircraft de-icing.
8. Mining: Air compressors are extensively used in the mining industry. They power pneumatic tools for drilling, rock blasting, and excavation. Compressed air is also utilized for ventilation, conveying materials, and operating underground equipment.
9. Energy and Utilities: Air compressors play a vital role in the energy and utilities sector. They are used in power generation plants for pneumatic control systems, instrument air, and operating pneumatic valves. Compressed air is also employed for cleaning and maintenance purposes.
These are just a few examples of the industries where air compressors are widely utilized. The versatility and reliability of air compressors make them indispensable in numerous applications across diverse sectors.


editor by CX 2023-10-18
China OEM VSD Compressor Factory Sale Screw Air Compressor Without Oil 220 HP Widely Used air compressor lowes
Product Description
OFAC oil-free screw air compressor used Japanese Mitsui’s original technology, who is the only
maintenance service provider in China.
| TECHNICAL DATA |
||||||||||
| Model | Power | Pressure (bar) | Air Flow (m3/min) | Noise Level dBA | Outlet Size | Weight (kgs) | Lubricating Water(L) | Filter Element (B)-(Z) | Dimension LxWxH (mm) | |
| OF-7.5F | 7.5kw | 10hp | 8 | 1.0 | 60 | RP 3/4 | 400 | 22 | (25cm) 1 | 1000*720*1050 |
| OF-11F | 11kw | 15hp | 8 | 1.6 | 63 | 460 | 1156*845*1250 | |||
| OF-15F | 15kw | 20hp | 8 | 2.5 | 65 | RP 1 | 620 | 28 | (50cm) 1 | 1306*945*1260 |
| OF-18F | 18.5kw | 25hp | 8 | 3.0 | 67 | 750 | 33 | 1520*1060*1390 | ||
| OF-22F | 22kw | 30hp | 8 | 3.6 | 68 | 840 | 33 | 1520*1060*1390 | ||
| OF-30F | 30kw | 40hp | 8 | 5.0 | 69 | RP 11/4 | 1050 | 66 | (25cm) 5 | 1760*1160*1490 |
| OF-37F | 37kw | 50hp | 8 | 6.2 | 71 | 1100 | 1760*1160*1490 | |||
| OF-45S | 45kw | 60hp | 8 | 7.3 | 74 | RP 11/2 | 1050 | 88 | 1760*1160*1490 | |
| OF-45F | 45kw | 60hp | 8 | 7.3 | 74 | 1200 | 1760*1160*1490 | |||
| OF-55S | 55kw | 75hp | 8 | 10 | 74 | RP 2 | 1250 | 110 | (50cm) 5 | 1900*1250*1361 |
| OF-55F | 55kw | 75hp | 8 | 10 | 74 | 2200 | (50cm) 7 | 2350*1250*1880 | ||
| OF-75S | 75kw | 100hp | 8 | 13 | 75 | 1650 | (50cm) 5 | 1900*1250*1361 | ||
| OF-75F | 75kw | 100hp | 8 | 13 | 75 | 2500 | (50cm) 7 | 2550*1620*1880 | ||
| OF-90S | 90kw | 125hp | 8 | 15 | 76 | 2050 | (50cm) 5 | 1900*1250*1361 | ||
| OF-90F | 90kw | 125hp | 8 | 15 | 76 | 2650 | (50cm) 7 | 2550*1620*1880 | ||
| OF-110S | 110kw | 150hp | 8 | 20 | 78 | DN 65 | 2550 | 130 | (50cm) 12 | 2200*1600*1735 |
| OF-110F | 110kw | 150hp | 8 | 20 | 78 | 3500 | 130 | 3000*1700*2250 | ||
| OF-132S | 132kw | 175hp | 8 | 23 | 80 | 2700 | 130 | 2200*1600*2250 | ||
| OF-160S | 160kw | 220hp | 8 | 26 | 82 | 2900 | 165 | 2200*1600*2250 | ||
| OF-185S | 185kw | 250hp | 8 | 30 | 83 | DN 100 | 3300 | 180 | (50cm) 22 | 2860*1800*1945 |
| OF-200S | 200kw | 270hp | 8 | 33 | 83 | 3500 | 2860*1800*1945 | |||
| OF-220S | 220kw | 300hp | 8 | 36 | 85 | 4500 | 2860*2000*2300 | |||
| OF-250S | 250kw | 340hp | 8 | 40 | 85 | 4700 | 2860*2000*2300 | |||
| OF-315S | 315kw | 480hp | 8 | 50 | 90 | 5000 | 2860*2000*2300 | |||
F– air cooling method S– water cooling method
The brand “OFAC, OFC” specializes in the R&D, manufacturing, sales and service of compressors,
oil-free compressors and air end, special gas compressors, various air compressors and
post-processing equipment, providing customers with High-quality, environmentally friendly and
efficient air system solutions and fast and stable technical services.
FAQ
Q1: Warranty terms of your machine?
A1: One year warranty for the machine and technical support according to your needs.
Q2: Will you provide some spare parts of the machines?
A2: Yes, of course.
Q3: What about product package?
A3: We pack our products strictly with standard seaworthy case. Rcommend wooden
box.
Q4: Can you use our brand?
A4: Yes, OEM is available.
Q5: How long will you take to arrange production?
A5: Immediate delivery for stock products. 380V 50HZ we can delivery the goods within
3-15 days. Other voltage or other color we will delivery within 30-45 days.
Q6: How Many Staff Are There In your Factory?
A6: About 100.
Q7: What’s your factory’s production capacity?
A7: About 550-650 units per month.
Q8: What the exactly address of your factory?
A8: Our first workshop located in HangZhou, ZheJiang , second workshop located in
HangZhou, ZheJiang , China.
| After-sales Service: | Online Support |
|---|---|
| Warranty: | 2 Years |
| Lubrication Style: | Oil-free |
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
| Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
How are air compressors employed in the petrochemical industry?
Air compressors play a vital role in the petrochemical industry, where they are employed for various applications that require compressed air. The petrochemical industry encompasses the production of chemicals and products derived from petroleum and natural gas. Here’s an overview of how air compressors are utilized in the petrochemical industry:
1. Instrumentation and Control Systems:
Air compressors are used to power pneumatic instrumentation and control systems in petrochemical plants. These systems rely on compressed air to operate control valves, actuators, and other pneumatic devices that regulate processes such as flow control, pressure control, and temperature control. Compressed air provides a reliable and clean source of energy for these critical control mechanisms.
2. Pneumatic Tools and Equipment:
Petrochemical plants often utilize pneumatic tools and equipment for various tasks such as maintenance, repair, and construction activities. Air compressors supply the necessary compressed air to power these tools, including pneumatic drills, impact wrenches, grinders, sanders, and painting equipment. The versatility and convenience of compressed air make it an ideal energy source for a wide range of pneumatic tools used in the industry.
3. Process Air and Gas Supply:
Petrochemical processes often require a supply of compressed air and gases for specific applications. Air compressors are employed to generate compressed air for processes such as oxidation, combustion, and aeration. They may also be used to compress gases like nitrogen, hydrogen, and oxygen, which are utilized in various petrochemical reactions and treatment processes.
4. Cooling and Ventilation:
Petrochemical plants require adequate cooling and ventilation systems to maintain optimal operating conditions and ensure the safety of personnel. Air compressors are used to power cooling fans, blowers, and air circulation systems that help maintain the desired temperature, remove heat generated by equipment, and provide ventilation in critical areas.
5. Nitrogen Generation:
Nitrogen is widely used in the petrochemical industry for applications such as blanketing, purging, and inerting. Air compressors are utilized in nitrogen generation systems, where they compress atmospheric air, which is then passed through a nitrogen separation process to produce high-purity nitrogen gas. This nitrogen is used for various purposes, including preventing the formation of explosive mixtures, protecting sensitive equipment, and maintaining the integrity of stored products.
6. Instrument Air:
Instrument air is essential for operating pneumatic instruments, analyzers, and control devices throughout the petrochemical plant. Air compressors supply compressed air that is treated and conditioned to meet the stringent requirements of instrument air quality standards. Instrument air is used for tasks such as pneumatic conveying, pneumatic actuators, and calibration of instruments.
By employing air compressors in the petrochemical industry, operators can ensure reliable and efficient operation of pneumatic systems, power various tools and equipment, support critical processes, and maintain safe and controlled environments.
.webp)
What safety precautions should be taken when working with compressed air?
Working with compressed air requires adherence to certain safety precautions to prevent accidents and ensure the well-being of individuals involved. Here are some important safety measures to consider:
1. Personal Protective Equipment (PPE):
Wear appropriate PPE, including safety goggles or a face shield to protect eyes from flying debris or particles, hearing protection to reduce noise exposure, and gloves to safeguard hands from potential hazards.
2. Compressed Air Storage:
Avoid storing compressed air in containers that are not designed for this purpose, such as soda bottles or makeshift containers. Use approved and properly labeled air storage tanks or cylinders that can handle the pressure and are regularly inspected and maintained.
3. Pressure Regulation:
Ensure that the air pressure is regulated to a safe level suitable for the equipment and tools being used. High-pressure air streams can cause serious injuries, so it is important to follow the manufacturer’s recommendations and never exceed the maximum allowable pressure.
4. Air Hose Inspection:
Regularly inspect air hoses for signs of damage, such as cuts, abrasions, or leaks. Replace damaged hoses immediately to prevent potential accidents or loss of pressure.
5. Air Blowguns:
Exercise caution when using air blowguns. Never direct compressed air towards yourself or others, as it can cause eye injuries, hearing damage, or dislodge particles that may be harmful if inhaled. Always point blowguns away from people or any sensitive equipment or materials.
6. Air Tool Safety:
Follow proper operating procedures for pneumatic tools. Ensure that tools are in good working condition, and inspect them before each use. Use the appropriate accessories, such as safety guards or shields, to prevent accidental contact with moving parts.
7. Air Compressor Maintenance:
Maintain air compressors according to the manufacturer’s guidelines. Regularly check for leaks, clean or replace filters, and drain moisture from the system. Proper maintenance ensures the safe and efficient operation of the compressor.
8. Training and Education:
Provide adequate training and education to individuals working with compressed air. Ensure they understand the potential hazards, safe operating procedures, and emergency protocols. Encourage open communication regarding safety concerns and implement a culture of safety in the workplace.
9. Lockout/Tagout:
When performing maintenance or repairs on compressed air systems, follow lockout/tagout procedures to isolate the equipment from energy sources and prevent accidental startup. This ensures the safety of the individuals working on the system.
10. Proper Ventilation:
Ensure proper ventilation in enclosed areas where compressed air is used. Compressed air can displace oxygen, leading to a potential risk of asphyxiation. Adequate ventilation helps maintain a safe breathing environment.
By adhering to these safety precautions, individuals can minimize the risks associated with working with compressed air and create a safer work environment.
.webp)
Are there portable air compressors available for home use?
Yes, there are portable air compressors specifically designed for home use. These portable models offer convenience, versatility, and ease of use for various tasks around the house. Here are some key points about portable air compressors for home use:
1. Compact and Lightweight: Portable air compressors are typically compact and lightweight, making them easy to transport and store. They are designed with portability in mind, allowing homeowners to move them around the house or take them to different locations as needed.
2. Electric-Powered: Most portable air compressors for home use are electric-powered. They can be plugged into a standard household electrical outlet, eliminating the need for gasoline or other fuel sources. This makes them suitable for indoor use without concerns about emissions or ventilation.
3. Versatile Applications: Portable air compressors can be used for a wide range of home applications. They are commonly used for inflating tires, sports equipment, and inflatable toys. They are also handy for operating pneumatic tools such as nail guns, staplers, and paint sprayers. Additionally, portable air compressors can be used for cleaning tasks, powering airbrushes, and other light-duty tasks around the house.
4. Pressure and Capacity: Portable air compressors for home use typically have lower pressure and capacity ratings compared to larger industrial or commercial models. They are designed to meet the needs of common household tasks rather than heavy-duty applications. The pressure and capacity of these compressors are usually sufficient for most home users.
5. Oil-Free Operation: Many portable air compressors for home use feature oil-free operation. This means they do not require regular oil changes or maintenance, making them more user-friendly and hassle-free for homeowners.
6. Noise Level: Portable air compressors designed for home use often prioritize low noise levels. They are engineered to operate quietly, reducing noise disturbances in residential environments.
7. Cost: Portable air compressors for home use are generally more affordable compared to larger, industrial-grade compressors. They offer a cost-effective solution for homeowners who require occasional or light-duty compressed air applications.
When considering a portable air compressor for home use, it’s important to assess your specific needs and tasks. Determine the required pressure, capacity, and features that align with your intended applications. Additionally, consider factors such as portability, noise level, and budget to choose a suitable model that meets your requirements.
Overall, portable air compressors provide a practical and accessible compressed air solution for homeowners, allowing them to tackle a variety of tasks efficiently and conveniently within a home setting.


editor by CX 2023-10-18
China high quality 30kw 40HP Oil Free Less Oilless Non-Lubricated Screw Air Compressor air compressor portable
Product Description
Oil Free Rotary Compressor For Medical Industry Advantages:
1.Original Germany AERZEN/DENAIR air end,larger air delivery,lower noise.
2. Pass CE, ISO9001 Quality Certification
3. One of 3 biggest mobile air compressor manufacturer in China
4. Complete before-on-after sales service
5. Immediate reply or solution by email or call
6.Special oil gas separator with patents
7.High efficiency motor, up to 96%
8. More air production,less energy consumption(15% More air production compared with the
same power).
9. Warranty of absolute oil free,there is no lubricate oil in the air end(class 0 certified by
germany Tuv examination organization.).
10. Longest service life,Lowest usr cost.
Technical Parameters Of Oil Free Rotary Compressor For Medical Industry:
| Model | Maximum working pressure |
Capacity FAD | Installed motor power |
Noise | Dimensions (mm) |
Weight | Air outlet pipe diameter |
|||||
| bar(e) | psig | m³/min | cfm | kW | hp | dB(A) | L*W*H | kg | ||||
| DAW-7A | 8 | 116 | 1.24 | 43.8 | 7.5 | 10 | 58 | 1550*775*1445 | 630 | 3/4″ | ||
| 10 | 145 | 1.1 | 38.8 | 7.5 | 10 | |||||||
| DAW-11A | 8 | 116 | 1.67 | 59 | 11 | 15 | 58 | 1550*775*1445 | 650 | 3/4″ | ||
| 10 | 145 | 1.43 | 50.5 | 11 | 15 | |||||||
| 12.5 | 181 | 1.1 | 38.8 | 11 | 15 | |||||||
| DAW-15A | 8 | 116 | 2.27 | 80.2 | 15 | 20 | 63 | 1400*1000*1200 | 900 | 1″ | ||
| 10 | 145 | 2.05 | 72.4 | 15 | 20 | |||||||
| 12.5 | 181 | 1.51 | 53.3 | 15 | 20 | |||||||
| DAW-18A | 8 | 116 | 3.01 | 106.3 | 18.5 | 25 | 65 | 1400*1000*1200 | 970 | 1″ | ||
| 10 | 145 | 2.65 | 93.6 | 18.5 | 25 | |||||||
| 12.5 | 181 | 2.07 | 73.1 | 18.5 | 25 | |||||||
| DAW-22A | 8 | 116 | 3.46 | 122.2 | 22 | 30 | 65 | 1400*1000*1200 | 1000 | 1″ | ||
| 10 | 145 | 3.08 | 108.8 | 22 | 30 | |||||||
| 12.5 | 181 | 2.59 | 91.5 | 22 | 30 | |||||||
| DAW-30A | 8 | 116 | 5.4 | 190.7 | 30 | 40 | 66 | 1850*1150*1300 | 1250 | 1-1/2″ | ||
| 10 | 145 | 4.54 | 160.3 | 30 | 40 | |||||||
| 12.5 | 181 | 4.11 | 145.1 | 30 | 40 | |||||||
| DAW-37A | 8 | 116 | 6.26 | 221 | 37 | 50 | 67 | 1850*1150*1300 | 1297 | 1-1/2″ | ||
| 10 | 145 | 5.51 | 194.6 | 37 | 50 | |||||||
| 12.5 | 181 | 5.19 | 183.3 | 37 | 50 | |||||||
| DAW-45A/W | 8 | 116 | 7.56 | 266.9 | 45 | 60 | 68 | 1850*1150*1300 | 1500 | 2″ | ||
| 10 | 145 | 6.59 | 232.7 | 45 | 60 | |||||||
| 12.5 | 181 | 5.94 | 209.7 | 45 | 60 | |||||||
| DAW-55A/W | 8 | 116 | 9.61 | 339.3 | 55 | 75 | 70 | 1900*1500*1700 | 1596 | 2″ | ||
| 10 | 145 | 8.75 | 309 | 55 | 75 | |||||||
| 12.5 | 181 | 7.54 | 266.2 | 55 | 75 | |||||||
| DAW-75A/W | 8 | 116 | 12.42 | 438.6 | 75 | 100 | 73 | 1900*1500*1700 | 1790 | 2″ | ||
| 10 | 145 | 11.34 | 400.4 | 75 | 100 | |||||||
| 12.5 | 181 | 9.83 | 347.1 | 75 | 100 | |||||||
| DAW-90A/W | 8 | 116 | 16.19 | 571.7 | 90 | 120 | 73 | 1900*1500*1700 | 2250 | 2-1/2″ | ||
| 10 | 145 | 14.42 | 509.2 | 90 | 120 | |||||||
| 12.5 | 181 | 12.23 | 431.8 | 90 | 120 | |||||||
| DAW-110W | 8 | 116 | 19.28 | 680.8 | 110 | 150 | 78 | 2150*1600*1800 | 2270 | 2-1/2″ | ||
| 10 | 145 | 16.74 | 591.1 | 110 | 150 | |||||||
| 12.5 | 181 | 15 | 529.7 | 110 | 150 | |||||||
| DAW-132W | 8 | 116 | 22.06 | 778.9 | 132 | 175 | 78 | 2150*1600*1800 | 2330 | 2-1/2″ | ||
| 10 | 145 | 20.25 | 715 | 132 | 175 | |||||||
| 12.5 | 181 | 18.14 | 640.5 | 132 | 175 | |||||||
| DAW-160W | 8 | 116 | 28.66 | 1012 | 160 | 215 | 78 | 2150*1600*1800 | 3660 | 3″ | ||
| 10 | 145 | 24.36 | 860.2 | 160 | 215 | |||||||
| 12.5 | 181 | 22.03 | 777.9 | 160 | 215 | |||||||
| DAW-200W | 8 | 116 | 36.39 | 1284.9 | 200 | 270 | 78 | 3100*1700*2090 | 3690 | 4″ | ||
| 10 | 145 | 29.81 | 1052.6 | 200 | 270 | |||||||
| 12.5 | 181 | 27.43 | 968.6 | 200 | 270 | |||||||
| DAW-250W | 8 | 116 | 42.6 | 1504.2 | 250 | 350 | 79 | 3100*1700*2090 | 3900 | 4″ | ||
| 10 | 145 | 38.75 | 1368.3 | 250 | 350 | |||||||
| 12.5 | 181 | 34.43 | 1215.7 | 250 | 350 | |||||||
DENAIR Factory:
At DENAIR, we earn our customers’ trust and satisfaction by manufacturing the superior quality compressed air products for all industries. All of our products are designed for reliable performance, easy maintenance, and maximum energy efficiency. CHINAMFG has been exporting to more than 90 countries across the globe. We have sales representatives who can speak English, Spanish, French, Russian and Arabic, which makes it easier for our clients from all over the world to interact and negotiate with us.
DENAIR Sales Offices:
DENAIR Exhibitions:
DENAIR Global Customers:
Water-lubricated Oil-free Screw Air Compressor Packaging:
FAQ:
Q1: Are you factory or trade company?
A1: We are factory.
Q2: What the exactly address of your factory?
A2: No. 366, YangzhuangBang Street, Pingxing Rd., Xindai Town,HangZhou, ZHangZhoug Province, China
Q3: Warranty terms of your machine?
A3: One year warranty for the machine and technical support according to your needs.
Q4: Will you provide some spare parts of the machines?
A4: Yes, of course.
Q5: How long will you take to arrange production?
A5: 380V 50HZ we can delivery the goods within 10 days. Other electricity or other color we will delivery within 22 days
Q6: Can you accept OEM orders?
A6: Yes, with professional design team, OEM orders are highly welcome.
| Lubrication Style: | Oil-free |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
What are the advantages of using rotary vane compressors?
Rotary vane compressors offer several advantages that make them a popular choice for various applications. These compressors are widely used in industries where a reliable and efficient source of compressed air is required. Here are the advantages of using rotary vane compressors:
1. Compact and Lightweight:
Rotary vane compressors are typically compact and lightweight compared to other types of compressors. Their compact design makes them suitable for installations where space is limited, such as in small workshops or mobile applications. The lightweight nature of these compressors allows for easy transportation and maneuverability.
2. High Efficiency:
Rotary vane compressors are known for their high efficiency. The design of the vanes and the compression chamber allows for smooth and continuous compression, resulting in minimal energy losses. This efficiency translates into lower energy consumption and reduced operating costs over time.
3. Quiet Operation:
Rotary vane compressors operate with relatively low noise levels. The design of the compressor, including the use of vibration damping materials and sound insulation, helps to minimize noise and vibrations during operation. This makes rotary vane compressors suitable for applications where noise reduction is important, such as in indoor environments or noise-sensitive areas.
4. Oil Lubrication:
Many rotary vane compressors utilize oil lubrication, which provides several benefits. The oil lubrication helps to reduce wear and friction between the moving parts, resulting in extended compressor life and improved reliability. It also contributes to better sealing and improved efficiency by minimizing internal leakage.
5. Versatile Applications:
Rotary vane compressors are versatile and can be used in a wide range of applications. They are suitable for both industrial and commercial applications, including automotive workshops, small manufacturing facilities, dental offices, laboratories, and more. They can handle various compressed air requirements, from light-duty tasks to more demanding applications.
6. Easy Maintenance:
Maintenance of rotary vane compressors is relatively straightforward. Routine maintenance tasks typically include oil changes, filter replacements, and periodic inspection of vanes and seals. The simplicity of the design and the availability of replacement parts make maintenance and repairs easier and more cost-effective.
These advantages make rotary vane compressors an attractive choice for many applications, providing reliable and efficient compressed air solutions.
.webp)
How do you maintain proper air quality in compressed air systems?
Maintaining proper air quality in compressed air systems is essential to ensure the reliability and performance of pneumatic equipment and the safety of downstream processes. Here are some key steps to maintain air quality:
1. Air Filtration:
Install appropriate air filters in the compressed air system to remove contaminants such as dust, dirt, oil, and water. Filters are typically placed at various points in the system, including the compressor intake, aftercoolers, and before point-of-use applications. Regularly inspect and replace filters to ensure their effectiveness.
2. Moisture Control:
Excessive moisture in compressed air can cause corrosion, equipment malfunction, and compromised product quality. Use moisture separators or dryers to remove moisture from the compressed air. Refrigerated dryers, desiccant dryers, or membrane dryers are commonly employed to achieve the desired level of dryness.
3. Oil Removal:
If the compressed air system utilizes oil-lubricated compressors, it is essential to incorporate proper oil removal mechanisms. This can include coalescing filters or adsorption filters to remove oil aerosols and vapors from the air. Oil-free compressors eliminate the need for oil removal.
4. Regular Maintenance:
Perform routine maintenance on the compressed air system, including inspections, cleaning, and servicing of equipment. This helps identify and address any potential issues that may affect air quality, such as leaks, clogged filters, or malfunctioning dryers.
5. Air Receiver Tank Maintenance:
Regularly drain and clean the air receiver tank to remove accumulated contaminants, including water and debris. Proper maintenance of the tank helps prevent contamination from being introduced into the compressed air system.
6. Air Quality Testing:
Periodically test the quality of the compressed air using appropriate instruments and methods. This can include measuring particle concentration, oil content, dew point, and microbial contamination. Air quality testing provides valuable information about the effectiveness of the filtration and drying processes and helps ensure compliance with industry standards.
7. Education and Training:
Educate personnel working with compressed air systems about the importance of air quality and the proper procedures for maintaining it. Provide training on the use and maintenance of filtration and drying equipment, as well as awareness of potential contaminants and their impact on downstream processes.
8. Documentation and Record-Keeping:
Maintain accurate records of maintenance activities, including filter replacements, drying system performance, and air quality test results. Documentation helps track the system’s performance over time and provides a reference for troubleshooting or compliance purposes.
By implementing these practices, compressed air systems can maintain proper air quality, minimize equipment damage, and ensure the integrity of processes that rely on compressed air.
.webp)
How does an air compressor work?
An air compressor works by using mechanical energy to compress and pressurize air, which is then stored and used for various applications. Here’s a detailed explanation of how an air compressor operates:
1. Air Intake: The air compressor draws in ambient air through an intake valve or filter. The air may pass through a series of filters to remove contaminants such as dust, dirt, and moisture, ensuring the compressed air is clean and suitable for its intended use.
2. Compression: The intake air enters a compression chamber, typically consisting of one or more pistons or a rotating screw mechanism. As the piston moves or the screw rotates, the volume of the compression chamber decreases, causing the air to be compressed. This compression process increases the pressure and reduces the volume of the air.
3. Pressure Build-Up: The compressed air is discharged into a storage tank or receiver where it is held at a high pressure. The tank allows the compressed air to be stored for later use and helps to maintain a consistent supply of compressed air, even during periods of high demand.
4. Pressure Regulation: Air compressors often have a pressure regulator that controls the output pressure of the compressed air. This allows the user to adjust the pressure according to the requirements of the specific application. The pressure regulator ensures that the compressed air is delivered at the desired pressure level.
5. Release and Use: When compressed air is needed, it is released from the storage tank or receiver through an outlet valve or connection. The compressed air can then be directed to the desired application, such as pneumatic tools, air-operated machinery, or other pneumatic systems.
6. Continued Operation: The air compressor continues to operate as long as there is a demand for compressed air. When the pressure in the storage tank drops below a certain level, the compressor automatically starts again to replenish the compressed air supply.
Additionally, air compressors may include various components such as pressure gauges, safety valves, lubrication systems, and cooling mechanisms to ensure efficient and reliable operation.
In summary, an air compressor works by drawing in air, compressing it to increase its pressure, storing the compressed air, regulating the output pressure, and releasing it for use in various applications. This process allows for the generation of a continuous supply of compressed air for a wide range of industrial, commercial, and personal uses.


editor by CX 2023-10-18